8 research outputs found

    Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma.

    Get PDF
    Background:DNA methylation of CpG sites on genetic loci has been linked to increased risk of asthma in children exposed to elevated ambient air pollutants (AAPs). Further identification of specific CpG sites and the pollutants that are associated with methylation of these CpG sites in immune cells could impact our understanding of asthma pathophysiology. In this study, we sought to identify some CpG sites in specific genes that could be associated with asthma regulation (Foxp3 and IL10) and to identify the different AAPs for which exposure prior to the blood draw is linked to methylation levels at these sites. We recruited subjects from Fresno, California, an area known for high levels of AAPs. Blood samples and responses to questionnaires were obtained (n = 188), and in a subset of subjects (n = 33), repeat samples were collected 2 years later. Average measures of AAPs were obtained for 1, 15, 30, 90, 180, and 365 days prior to each blood draw to estimate the short-term vs. long-term effects of the AAP exposures. Results:Asthma was significantly associated with higher differentially methylated regions (DMRs) of the Foxp3 promoter region (p = 0.030) and the IL10 intronic region (p = 0.026). Additionally, at the 90-day time period (90 days prior to the blood draw), Foxp3 methylation was positively associated with NO2, CO, and PM2.5 exposures (p = 0.001, p = 0.001, and p = 0.012, respectively). In the subset of subjects retested 2 years later (n = 33), a positive association between AAP exposure and methylation was sustained. There was also a negative correlation between the average Foxp3 methylation of the promoter region and activated Treg levels (p = 0.039) and a positive correlation between the average IL10 methylation of region 3 of intron 4 and IL10 cytokine expression (p = 0.030). Conclusions:Short-term and long-term exposures to high levels of CO, NO2, and PM2.5 were associated with alterations in differentially methylated regions of Foxp3. IL10 methylation showed a similar trend. For any given individual, these changes tend to be sustained over time. In addition, asthma was associated with higher differentially methylated regions of Foxp3 and IL10

    A novel monoclonal antibody against human Argonaute proteins reveals unexpected characteristics of miRNAs in human blood cells

    No full text
    Argonaute (Ago) proteins bind to microRNA (miRNAs) and short interfering RNAs (siRNAs) and form the core components of effector complexes that mediate miRNA and siRNA function. Currently, there is a paucity of reliable antibodies against mammalian Ago proteins, thus precluding studies of endogenous Ago proteins from tissues. Here we report the development of 2A8, a novel anti-Ago monoclonal antibody that recognizes human and mouse Ago proteins and efficiently immunoprecipitates miRNAs. We report the characterization of 2A8 and its use to clone miRNAs from human brain and from preparations of human polymorphonuclear leukocytes (neutrophils), which revealed a prevalent miRNA with unusual features

    Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter

    Get PDF
    Abstract Background Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). Methods We performed a cross-sectional study of 135 children ages 9–14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. Results In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m3), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs −77, −65, and −58) (β estimate = −2.37%, p  0.05). Differences across strata were statistically significant (p interaction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (β estimate = −0.40%, p < 0.01) and reduced FEF25–75% (β estimate = −1.46%, p < 0.01). Conclusions Physical activity in urban children appeared associated with lower FOXP3 promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These findings suggest that physical activity may induce immunologic benefits, particularly for urban children with greater risk of impaired lung function due to exposure to higher air pollution. FOXP3 promoter buccal cell methylation may function as a useful biomarker of that benefit

    Additional file 1: Figure S1. of Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter

    No full text
    Sampling scheme for accelerometer, black carbon (BC), buccal swabs for DNA and RNA analysis and spirometry. Figure S2. Schematic representation of the FOXP3 gene and the six CpG sites in the promoter region that were investigated. TSS transcription start site, TSDR Treg-specific demethylated region, CNS conserved non-coding sequence. Figure S3. Correlations of FOXP3 methylation across promoter regions and with mRNA relative expression. Figure S4. Distribution of FOXP3 promoter methylation in females vs. males stratified by physical activity (active vs. non-active). Females have lower FOXP3 promoter methylation compared to males. Figure S5. Distribution of FOXP3 promoter methylation in females vs. males stratified by BC concentration (low vs. high). Females have lower FOXP3 promoter methylation compared to males. Figure S6. Distribution of FOXP3 promoter methylation stratified by combined activity and BC concentration in females (n = 67). Figure S7. Distribution of FOXP3 promoter methylation stratified by combined activity and BC concentration in males (n = 68)

    Additional file 2: Table S1. of Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter

    No full text
    Primers for PCR and pyrosequencing experiments. Table S2. Correlations of day 1 vs. day 6 FOXP3 methylation and mRNA expression. Table S3. Among children with high BC exposure, there is a trend towards active children (coded 1) having a greater odds of lower methylation compared to non-active children (coded 0). Table S4. Higher FOXP3 promoter 2 methylation is associated with overall lower lung function (n = 135). Table S5. The relationship between FOXP3 promoter 2 methylation and lung function does not significantly vary by high vs. low BC exposure. Table S6. Among children with high BC, the association between physical activity and FOXP3 promoter methylation is greater in females. Table S7. The relationship between FOXP3 promoter methylation and lung function is greater among females compared to that among males
    corecore