5 research outputs found

    Reproducibility of the lung anatomy using Active Breathing Control:Dosimetric consequences for scanned proton treatments

    Get PDF
    Purpose/Objective The treatment of moving targets with scanning proton beams is challenging. By controlling lung volumes, Active Breathing Control (ABC) assists breath-holding for motion mitigation. The delivery of proton treatment fractions often exceeds feasible breath-hold durations, requiring high breath-hold reproducibility. Therefore, we investigated dosimetric consequences of anatomical reproducibility uncertainties in the lung under ABC, evaluating robustness of scanned proton treatments during breath-hold. Material/Methods T1-weighted MRIs of five volunteers were acquired during ABC, simulating image acquisition during four subsequent breath-holds within one treatment fraction. Deformation vector fields obtained from these MRIs were used to deform 95% inspiration phase CTs of 3 randomly selected non-small-cell lung cancer patients (Figure 1). Per patient, an intensity-modulated proton plan was recalculated on the 3 deformed CTs, to assess the dosimetric influence of anatomical breath-hold inconsistencies. Results Dosimetric consequences were negligible for patient 1 and 2 (Figure 1). Patient 3 showed a decreased volume (95.2%) receiving 95% of the prescribed dose for one deformed CT. The volume receiving 105% of the prescribed dose increased from 0.0% to 9.9%. Furthermore, the heart volume receiving 5 Gy varied by 2.3%. Figure 2 shows dose volume histograms for all relevant structures in patient 3. Conclusion Based on the studied patients, our findings suggest that variations in breath-hold have limited effect on the dose distribution for most lung patients. However, for one patient, a significant decrease in target coverage was found for one of the deformed CTs. Therefore, further investigation of dosimetric consequences from intra-fractional breath-hold uncertainties in the lung under ABC is needed

    Diversity of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated from Inpatients of 30 Hospitals in Orange County, California

    Get PDF
    There is a need for a regional assessment of the frequency and diversity of MRSA to determine major circulating clones and the extent to which community and healthcare MRSA reservoirs have mixed. We conducted a prospective cohort study of inpatients in Orange County, California, systematically collecting clinical MRSA isolates from 30 hospitals, to assess MRSA diversity and distribution. All isolates were characterized by spa typing, with selective PFGE and MLST to relate spa types with major MRSA clones. We collected 2,246 MRSA isolates from hospital inpatients. This translated to 91/10,000 inpatients with MRSA and an Orange County population estimate of MRSA inpatient clinical cultures of 86/100,000 people. spa type genetic diversity was heterogeneous between hospitals, and relatively high overall (72%). USA300 (t008/ST8), USA100 (t002/ST5) and a previously reported USA100 variant (t242/ST5) were the dominant clones across all Orange County hospitals, representing 83% of isolates. Fifteen hospitals isolated more t008 (USA300) isolates than t002/242 (USA100) isolates, and 12 hospitals isolated more t242 isolates than t002 isolates. The majority of isolates were imported into hospitals. Community-based infection control strategies may still be helpful in stemming the influx of traditionally community-associated strains, particularly USA300, into the healthcare setting. © 2013 Hudson et al
    corecore