287 research outputs found
The effects of magnetic field, age, and intrinsic luminosity on Crab-like pulsar wind nebulae
We investigate the time-dependent behavior of Crab-like pulsar wind nebulae
(PWNe) generating a set of models using 4 different initial spin-down
luminosities (), 8 values
of magnetic fraction ( 0.001, 0.01, 0.03, 0.1, 0.5, 0.9, 0.99, and
0.999, i.e., from fully particle dominated to fully magnetically dominated
nebulae), and 3 distinctive ages: 940, 3000, and 9000 years. We find that the
self-synchrotron Compton (SSC) contribution is irrelevant for =0.1, 1,
and 10% of the Crab power, disregarding the age and the magnetic fraction. SSC
only becomes relevant for highly energetic ( of the Crab), particle
dominated nebulae at low ages (of less than a few kyr), located in a FIR
background with relatively low energy density. Since no pulsar other than Crab
is known to have these features, these results clarify why the Crab Nebula, and
only it, is SSC dominated. No young PWN would be detectable at TeV energies if
the pulsar's spin-down power is 0.1% Crab or lower. For 1% of the Crab
spin-down, only particle dominated nebulae can be detected by H.E.S.S.-like
telescopes when young enough (with details depending on the precise injection
and environmental parameters). Above 10% of the Crab's power, all PWNe are
detectable by H.E.S.S.-like telescopes if they are particle dominated, no
matter the age. The impact of the magnetic fraction on the final SED is varied
and important, generating order of magnitude variations in the luminosity
output for systems that are otherwise the same (equal , , injection,
and environment).Comment: Accepted for publication in MNRA
Is there room for highly magnetized pulsar wind nebulae among those non-detected at TeV?
We make a time-dependent characterization of pulsar wind nebulae (PWNe)
surrounding some of the highest spin-down pulsars that have not yet been
detected at TeV. Our aim is assessing their possible level of magnetization. We
analyze the nebulae driven by J2022+3842 in G76.9+1.0, J0540-6919 in N158A (the
Crab twin), J1400--6325 in G310.6--1.6, and J1124--5916 in G292.0+0.18, none of
which have been found at TeV energies. For comparison we refer to published
models of G54.1+0.3, the Crab nebula, and develop a model for N157B in the
Large Magellanic Cloud (LMC). We conclude that further observations of N158A
could lead to its detection at VHE. According to our model, a FIR energy
density of 5 eV cm could already lead to a detection in H.E.S.S.
(assuming no other IC target field) within 50 hours of exposure and just the
CMB inverse Compton contribution would produce VHE photons at the CTA
sensitivity. We also propose models for G76.9+1.0, G310.6--1.6 and G292.0+1.8
which suggest their TeV detection in a moderate exposure for the latter two
with the current generation of Cherenkov telescopes. We analyze the possibility
that these PWNe are highly magnetized, where the low number of particles
explains the residual detection in X-rays and their lack of detection at TeV
energies.Comment: Accepted for publication in MNRA
Determination of the Night Sky Background around the Crab pulsar using its optical pulsation
The poor angular resolution of imaging gamma-ray telescopes is offset by the
large reflector areas of next generation telescopes such as MAGIC (17~m
diameter), which makes the study of optical emission associated with some
gamma-ray sources feasible. Furthermore, the extremely fast time response of
photomultipliers (PMs) makes them ideal detectors for fast (subsecond) optical
transients and periodic sources like pulsars. The optical pulse of the Crab
pulsar was detected with the HEGRA CT1 central pixel using a modified PM,
similar to the future MAGIC camera PMs. The purpose of these periodic
observations was to determine the light of the night sky (LONS) for the
galactic anticenter Crab region.Our results are between 2.5 and 3 times larger
than the previously measured LONS (outside the galactic plane), as expected
since the Crab pulsar is in the galactic plane, which implies a slightly higher
energy threshold for Crab observations, if the higher value of CT1 measured
LONS rate for galactic sources is used.Comment: 19 pages, 6 figures, accepted by Astroparticle Physic
CTA and cosmic-ray diffusion in molecular clouds
Molecular clouds act as primary targets for cosmic-ray interactions and are
expected to shine in gamma-rays as a by-product of these interactions. Indeed
several detected gamma-ray sources both in HE and VHE gamma-rays (HE: 100 MeV <
E 100 GeV) have been directly or indirectly associated with
molecular clouds. Information on the local diffusion coefficient and the local
cosmic-ray population can be deduced from the observed gamma-ray signals. In
this work we concentrate on the capability of the forthcoming Cherenkov
Telescope Array Observatory (CTA) to provide such measurements. We investigate
the expected emission from clouds hosting an accelerator, exploring the
parameter space for different modes of acceleration, age of the source, cloud
density profile, and cosmic ray diffusion coefficient. We present some of the
most interesting cases for CTA regarding this science topic. The simulated
gamma-ray fluxes depend strongly on the input parameters. In some cases, from
CTA data it will be possible to constrain both the properties of the
accelerator and the propagation mode of cosmic rays in the cloud.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy
Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184
H.E.S.S. observations of the Large Magellanic Cloud
The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a
distance of approximately 48 kpc. Despite its distance it harbours several
interesting targets for TeV gamma-ray observations. The composite supernova
remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of
very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula
ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the
remnant of the most recent supernova explosion that occurred in the
neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this
remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this
has not been detected so far. Fermi/LAT discovered diffuse high energy (HE)
gamma-ray emission from the general direction of the massive star forming
region 30 Doradus but no clear evidence for emission from either N 157B or SN
1987A has been published. The part of the LMC containing these objects has been
observed regularly with the H.E.S.S. telescopes since 2003. With deep
observations carried out in 2010 a very good exposure of this part of the sky
has been obtained. The current status of the H.E.S.S. LMC observations is
reported along with new results on N 157B and SN 1987A.Comment: 4 pages, 3 figures, proceedings of the 32nd Internatioal Cosmic Ray
Conference, Beijing 201
A Population of Teraelectronvolt Pulsar Wind Nebulae in the H.E.S.S. Galactic Plane Survey
The most numerous source class that emerged from the H.E.S.S. Galactic Plane
Survey are Pulsar Wind Nebulae (PWNe). The 2013 reanalysis of this survey,
undertaken after almost 10 years of observations, provides us with the most
sensitive and most complete census of gamma-ray PWNe to date. In addition to a
uniform analysis of spectral and morphological parameters, for the first time
also flux upper limits for energetic young pulsars were extracted from the
data. We present a discussion of the correlation between energetic pulsars and
TeV objects, and their respective properties. We will put the results in
context with the current theoretical understanding of PWNe and evaluate the
plausibility of previously non-established PWN candidates.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil
Search for Gamma-Ray Emission from AE Aquarii with Seven Years of Fermi-LAT Observations
AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest
rotating (P = 33.08 s) white dwarfs known. Based on seven years of
Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for
gamma-ray emission from AE Aqr. Using X-ray observations from ASCA, XMM-Newton,
Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend
and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for
gamma-ray pulsations at the spin period of the white dwarf. No gamma-ray
pulsations were detected above 3 significance. Neither phase-averaged
gamma-ray emission nor gamma-ray variability of AE Aquarii is detected by
Fermi-LAT. We impose the most restrictive upper limit to the gamma-ray flux
from AE Aqr to date: erg cm s in the 100
MeV-300 GeV energy range, providing constraints on models.Comment: 16 pages, 4 figures, 1 table, Accepted for publication in Ap
- …