2,583 research outputs found

    The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant

    Get PDF
    We present a new selection technique of producing spectroscopic target catalogues for massive spectroscopic surveys for cosmology. This work was conducted in the context of the extended Baryon Oscillation Spectroscopic Survey (eBOSS), which will use ~200 000 emission line galaxies (ELGs) at 0.6<zspec<1.0 to obtain a precise baryon acoustic oscillation measurement. Our proposed selection technique is based on optical and near-infrared broad-band filter photometry. We used a training sample to define a quantity, the Fisher discriminant (linear combination of colours), which correlates best with the desired properties of the target: redshift and [OII] flux. The proposed selections are simply done by applying a cut on magnitudes and this Fisher discriminant. We used public data and dedicated SDSS spectroscopy to quantify the redshift distribution and [OII] flux of our ELG target selections. We demonstrate that two of our selections fulfil the initial eBOSS/ELG redshift requirements: for a target density of 180 deg^2, ~70% of the selected objects have 0.6<zspec<1.0 and only ~1% of those galaxies in the range 0.6<zspec<1.0 are expected to have a catastrophic zspec estimate. Additionally, the stacked spectra and stacked deep images for those two selections show characteristic features of star-forming galaxies. The proposed approach using the Fisher discriminant could, however, be used to efficiently select other galaxy populations, based on multi-band photometry, providing that spectroscopic information is available. This technique could thus be useful for other future massive spectroscopic surveys such as PFS, DESI, and 4MOST.Comment: Version published in A&

    Characterizing the universal rigidity of generic frameworks

    Full text link
    A framework is a graph and a map from its vertices to E^d (for some d). A framework is universally rigid if any framework in any dimension with the same graph and edge lengths is a Euclidean image of it. We show that a generic universally rigid framework has a positive semi-definite stress matrix of maximal rank. Connelly showed that the existence of such a positive semi-definite stress matrix is sufficient for universal rigidity, so this provides a characterization of universal rigidity for generic frameworks. We also extend our argument to give a new result on the genericity of strict complementarity in semidefinite programming.Comment: 18 pages, v2: updates throughout; v3: published versio

    Directed self-organization of graphene nanoribbons on SiC

    Full text link
    Realization of post-CMOS graphene electronics requires production of semiconducting graphene, which has been a labor-intensive process. We present tailoring of silicon carbide crystals via conventional photolithography and microelectronics processing to enable templated graphene growth on 4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes. This allows self-organized growth of graphene nanoribbons with dimensions defined by those of the facet. Preferential growth is confirmed by Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements, and electrical characterization of prototypic graphene devices is presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2 SiC chip demonstrates scalability of this process and represents the highest density of graphene devices reported to date.Comment: 13 pages, 5 figure

    Non-Equilibrium Large N Yukawa Dynamics: marching through the Landau pole

    Get PDF
    The non-equilibrium dynamics of a Yukawa theory with N fermions coupled to a scalar field is studied in the large N limit with the goal of comparing the dynamics predicted from the renormalization group improved effective potential to that obtained including the fermionic backreaction. The effective potential is of the Coleman-Weinberg type. Its renormalization group improvement is unbounded from below and features a Landau pole. When viewed self-consistently, the initial time singularity does not arise. The different regimes of the dynamics of the fully renormalized theory are studied both analytically and numerically. Despite the existence of a Landau pole in the model, the dynamics of the mean field is smooth as it passes the location of the pole. This is a consequence of a remarkable cancellation between the effective potential and the dynamical chiral condensate. The asymptotic evolution is effectively described by a quartic upright effective potential. In all regimes, profuse particle production results in the formation of a dense fermionic plasma with occupation numbers nearly saturated up to a scale of the order of the mean field. This can be interpreted as a chemical potential. We discuss the implications of these results for cosmological preheating.Comment: 36 pages, 14 figures, LaTeX, submitted to Physical Review

    Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry

    Get PDF
    Aim of this study was the site-specific conjugation of an epidermal growth factor (EGF)-polyethylene glycol (PEG) chain by click chemistry onto a poly(amido amine) (PAMAM) dendron, as a key step toward defined multifunctional carriers for targeted gene delivery. For this purpose, at first propargyl amine cored PAMAM dendrons with ester ends were synthesized. The chain terminal ester groups were then modified by oligoamines with different secondary amino densities. The oligoamine-modified PAMAM dendrons were well biocompatible, as demonstrated in cytotoxicity assays. Among the different oligoamine-modified dendrons, PAMAM-pentaethylenehexamine (PEHA) dendron polyplexes displayed the best gene transfer ability. Conjugation of PAMAM-PEHA dendron with PEG spacer was conducted via click reaction, which was performed before amidation with PEHA. The resultant PEG-PAMAM-PEHA copolymer was then coupled with EGF ligand. pDNA transfections in HuH-7 hepatocellular carcinoma cells showed a 10-fold higher efficiency with the polyplexes containing conjugated EGF as compared to the ligand-free ones, demonstrating the concept of ligand targeting. Overall gene transfer efficiencies, however, were moderate, suggesting that additional measures for overcoming subsequent intracellular bottlenecks in delivery have to be taken

    A single-photon transistor using nano-scale surface plasmons

    Full text link
    It is well known that light quanta (photons) can interact with each other in nonlinear media, much like massive particles do, but in practice these interactions are usually very weak. Here we describe a novel approach to realize strong nonlinear interactions at the single-photon level. Our method makes use of recently demonstrated efficient coupling between individual optical emitters and tightly confined, propagating surface plasmon excitations on conducting nanowires. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using quantum optical techniques. As a novel application, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence or absence of a single incident photon in a ``gate'' field is sufficient to completely control the propagation of subsequent ``signal'' photons.Comment: 20 pages, 4 figure

    Light scattering from disordered overlayers of metallic nanoparticles

    Full text link
    We develop a theory for light scattering from a disordered layer of metal nanoparticles resting on a sample. Averaging over different disorder realizations is done by a coherent potential approximation. The calculational scheme takes into account effects of retardation, multipole excitations, and interactions with the sample. We apply the theory to a system similar to the one studied experimentally by Stuart and Hall [Phys. Rev. Lett. {\bf 80}, 5663 (1998)] who used a layered Si/SiO2_2/Si sample. The calculated results agree rather well with the experimental ones. In particular we find conspicuous maxima in the scattering intensity at long wavelengths (much longer than those corresponding to plasmon resonances in the particles). We show that these maxima have their origin in interference phenomena in the layered sample.Comment: 19 pages, 12 figure

    Planting a Lyman alpha forest on AbacusSummit

    Get PDF
    The full-shape correlations of the Lyman alpha (Ly α) forest contain a wealth of cosmological information through the Alcock-Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical framework used for analysing them. Here, we leverage the accuracy and volume of the N-body simulation suite AbacusSummit to generate high-resolution Ly α skewers and quasi-stellar object (QSO) catalogues. One of the main goals of our mocks is to aid in the full-shape Ly α analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team. We provide optical depth skewers for six of the fiducial cosmology base-resolution simulations (, N = 69123) at z = 2.5. We adopt a simple recipe based on the Fluctuating Gunn-Peterson Approximation (FGPA) for constructing these skewers from the matter density in an N-body simulation and calibrate it against the 1D and 3D Ly α power spectra extracted from the hydrodynamical simulation IllustrisTNG (TNG;, N = 25003). As an important application, we study the non-linear broadening of the baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly α forest skewers. We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly α × QSO cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly α forest mocks open up the possibility for improved modelling of cross-correlations between Ly α and cosmic microwave background (CMB) lensing and Ly α and QSOs, and for forecasts of the 3-point Ly α correlation function. Our catalogues and skewers are publicly available on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under the section 'Data Availability')

    Structured Grading

    Get PDF
    This paper describes a compromise between the idealism of criterion based grading and the pragmatism of a norm based approach. The discussion is supported by a series of computer programs that are deliberately devoid of packaging clutter so that the users can clearly comprehend the processes and adapt the code to suit their particular purposes. The input data can be in numerical, alphabetical or categorical form and the primary output is a matrix of standardized marks. Additional analyses provide frequency distributions, rank order and alphabetic grade matrices, component correlations and categorical item analyses. The programs are designed to provide timely and appropriate information for final grade allocation.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Analysis of the impact of broad absorption lines on quasar redshift measurements with synthetic observations

    Get PDF
    Accurate quasar classifications and redshift measurements are increasingly important to precision cosmology experiments. Broad absorption line (BAL) features are present in 15-20 per cent of all quasars, and these features can introduce systematic redshift errors, and in extreme cases produce misclassifications. We quantitatively investigate the impact of BAL features on quasar classifications and redshift measurements with synthetic spectra that were designed to match observations by the Dark Energy Spectroscopic Instrument (DESI) survey. Over the course of 5 yr, DESI aims to measure spectra for 40 million galaxies and quasars, including nearly three million quasars. Our synthetic quasar spectra match the signal-to-noise ratio and redshift distributions of the first year of DESI observations, and include the same synthetic quasar spectra both with and without BAL features. We demonstrate that masking the locations of the BAL features decreases the redshift errors by about 1 per cent and reduces the number of catastrophic redshift errors by about 80 per cent. We conclude that identifying and masking BAL troughs should be a standard part of the redshift determination step for DESI and other large-scale spectroscopic surveys of quasars
    corecore