184 research outputs found

    The Dust Properties of Eight Debris Disk Candidates as Determined by Submillimeter Photometry

    Full text link
    The nature of far-infrared dust emission toward main sequence stars, whether interstellar or circumstellar, can be deduced from submillimeter photometry. We present JCMT/SCUBA flux measurements at 850 microns toward 8 stars with large photospheric excesses at 60-100 microns. 5 sources were detected at 3-sigma or greater significance and one was marginally detected at 2.5-sigma. The inferred dust masses and temperatures range from 0.033 to 0.24 Earth masses and 43-65 K respectively. The frequency behavior of the opacity, tau_nu ~ nu^beta, is relatively shallow, beta < 1. These dust properties are characteristic of circumstellar material, most likely the debris from planetesimal collisions. The 2 non-detections have lower temperatures, 35-38 K and steeper opacity indices, beta > 1.5, that are more typical of interstellar cirrus. The confirmed disks all have inferred diameters > 2'', most lie near the upper envelope of the debris disk mass distribution, and 4 are bright enough to be feasible for high resolution imaging.Comment: accepted by Ap

    Identification of a nearby stellar association in the Hipparcos catalog: implications for recent, local star formation

    Get PDF
    The TW Hydrae Association (~55 pc from Earth) is the nearest known region of recent star formation. Based primarily on the Hipparcos catalog, we have now identified a group of 9 or 10 co-moving star systems at a common distance (~45 pc) from Earth that appear to comprise another, somewhat older, association (``the Tucanae Association''). Together with ages and motions recently determined for some nearby field stars, the existence of the Tucanae and TW Hydrae Associations suggests that the Sun is now close to a region that was the site of substantial star formation only 10-40 million years ago. The TW Hydrae Association represents a final chapter in the local star formation history.Comment: 5 pages incl figs and table

    Incidence and survival of remnant disks around main-sequence stars

    Get PDF
    We present photometric ISO 60 and 170um measurements, complemented by some IRAS data at 60um, of a sample of 84 nearby main-sequence stars of spectral class A, F, G and K in order to determine the incidence of dust disks around such main-sequence stars. Of the stars younger than 400 Myr one in two has a disk; for the older stars this is true for only one in ten. We conclude that most stars arrive on the main sequence surrounded by a disk; this disk then decays in about 400 Myr. Because (i) the dust particles disappear and must be replenished on a much shorter time scale and (ii) the collision of planetesimals is a good source of new dust, we suggest that the rapid decay of the disks is caused by the destruction and escape of planetesimals. We suggest that the dissipation of the disk is related to the heavy bombardment phase in our Solar System. Whether all stars arrive on the main sequence surrounded by a disk cannot be established: some very young stars do not have a disk. And not all stars destroy their disk in a similar way: some stars as old as the Sun still have significant disks.Comment: 16 pages, 9 figures, Astron & Astrophys. in pres

    Spatial Separation of the 3.29 micron Emission Feature and Associated 2 micron Continuum in NGC 7023

    Get PDF
    We present a new 0.9" resolution 3.29 micron narrowband image of the reflection nebula NGC 7023. We find that the 3.29 micron IEF in NGC 7023 is brightest in narrow filaments NW of the illuminating star. These filaments have been seen in images of K', molecular hydrogen emission lines, the 6.2 and 11.3 micron IEFs, and HCO+. We also detect 3.29 micron emission faintly but distinctly between the filaments and the star. The 3.29 micron image is in contrast to narrowband images at 2.09, 2.14, and 2.18 micron, which show an extended emission peak midway between the filaments and the star, and much fainter emission near the filaments. The [2.18]-[3.29] color shows a wide variation, ranging from 3.4-3.6 mag at the 2 micron continuum peak to 5.5 mag in the filaments. We observe [2.18]-[3.29] to increase smoothly with increasing distance from the star, up until the filament, suggesting that the main difference between the spatial distributions of the 2 micron continuum and the the 3.29 micron emission is related to the incident stellar flux. Our result suggests that the 3.29 micron IEF carriers are likely to be distinct from, but related to, the 2 micron continuum emitters. Our finding also imply that, in NGC 7023, the 2 micron continuum emitters are mainly associated with HI, while the 3.29 micron IEF carriers are primarily found in warm molecular hydrogen, but that both can survive in HI or molecular hydrogen. (abridged)Comment: to appear in ApJ, including 1 table and 8 figures, high resolution figures available at http://www.ast.cam.ac.uk/~jin/n7023

    Very Low-Mass Objects in the Coronet Cluster: The Realm of the Transition Disks

    Full text link
    We present optical and IR spectra of a set of low-mass stars and brown dwarfs in the Coronet cluster (aged ~1Myr), obtained with the multifiber spectrograph FLAMES/VLT and IRS/Spitzer. The optical spectra reveal spectral types between M1 and M7.5, confirm the youth of the objects (via Li 6708 A absorption), and show the presence of accretion (via Halpha) and shocks (via forbidden line emission). The IRS spectra, together with IR photometry from the IRAC/MIPS instruments on Spitzer and 2MASS, confirm the presence of IR excesses characteristic of disks around ~70% of the objects. Half of the disks do not exhibit any silicate emission, or present flat features characteristic of large grains. The rest of the disks show silicate emission typical of amorphous and crystalline silicate grains a few microns in size. About 50% of the objects with disks do not show near-IR excess emission, having "transitional" disks, according to their classical definition. This is a very high fraction for such a young cluster. The large number of "transitional" disks suggests lifetimes comparable to the lifetimes of typical optically thick disks. Therefore, these disks may not be in a short-lived phase, intermediate between Class II and Class III objects. The median spectral energy distribution of the disks in the Coronet cluster is also closer to a flat disk than observed for the disks around solar-type stars in regions with similar age. The differences in the disk morphology and evolution in the Coronet cluster could be related to fact that these objects have very late spectral types compared to the solar-type stars in other cluster studies. Finally, the optical spectroscopy reveals that one of the X-ray sources is produced by a Herbig Haro object in the cloud.Comment: 51 pages, 13 figures, 10 table

    The unusual hydrocarbon emission from the early carbon star HD 100764: The connection between aromatics and aliphatics

    Full text link
    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to obtain spectra of HD 100764, an apparently single carbon star with a circumstellar disk. The spectrum shows emission features from polycyclic aromatic hydrocarbons (PAHs) that are shifted to longer wavelengths than normally seen, as characteristic of ``class C'' systems in the classification scheme of Peeters et al. All seven of the known class C PAH sources are illuminated by radiation fields that are cooler than those which typically excite PAH emission features. The observed wavelength shifts are consistent with hydrocarbon mixtures containing both aromatic and aliphatic bonds. We propose that the class C PAH spectra are distinctive because the carbonaceous material has not been subjected to a strong ultraviolet radiation field, allowing relatively fragile aliphatic materials to survive.Comment: 11 pages (in emulateapj), 5 tables, 7 figures. Accepted for publication in Ap

    Mid-Infrared Emission Features in the ISM: Feature-to-Feature Flux Ratios

    Full text link
    Using a limited, but representative sample of sources in the ISM of our Galaxy with published spectra from the Infrared Space Observatory, we analyze flux ratios between the major mid-IR emission features (EFs) centered around 6.2, 7.7, 8.6 and 11.3 microns, respectively. In a flux ratio-to-flux ratio plot of EF(6.2)/EF(7.7) as a function of EF(11.3)/EF(7.7), the sample sources form roughly a Λ\Lambda-shaped locus which appear to trace, on an overall basis, the hardness of a local heating radiation field. But some driving parameters other than the radiation field may also be required for a full interpretation of this trend. On the other hand, the flux ratio of EF(8.6)/EF(7.7) shows little variation over the sample sources, except for two HII regions which have much higher values for this ratio due to an ``EF(8.6\um) anomaly,'' a phenomenon clearly associated with environments of an intense far-UV radiation field. If further confirmed on a larger database, these trends should provide crucial information on how the EF carriers collectively respond to a changing environment.Comment: 16 pages, 1 figure, 1 table; accepted for publication in ApJ Letter

    Debris disks around Sun-like stars

    Full text link
    We have observed nearly 200 FGK stars at 24 and 70 microns with the Spitzer Space Telescope. We identify excess infrared emission, including a number of cases where the observed flux is more than 10 times brighter than the predicted photospheric flux, and interpret these signatures as evidence of debris disks in those systems. We combine this sample of FGK stars with similar published results to produce a sample of more than 350 main sequence AFGKM stars. The incidence of debris disks is 4.2% (+2.0/-1.1) at 24 microns for a sample of 213 Sun-like (FG) stars and 16.4% (+2.8/-2.9) at 70 microns for 225 Sun-like (FG) stars. We find that the excess rates for A, F, G, and K stars are statistically indistinguishable, but with a suggestion of decreasing excess rate toward the later spectral types; this may be an age effect. The lack of strong trend among FGK stars of comparable ages is surprising, given the factor of 50 change in stellar luminosity across this spectral range. We also find that the incidence of debris disks declines very slowly beyond ages of 1 billion years.Comment: ApJ, in pres

    Understanding the Spectral Energy Distributions of the Galactic Star Forming Regions IRAS 18314-0720, 18355-0532 & 18316-0602

    Get PDF
    Embedded Young Stellar Objects (YSO) in dense interstellar clouds is treated self-consistently to understand their spectral energy distributions (SED). Radiative transfer calculations in spherical geometry involving the dust as well as the gas component, have been carried out to explain observations covering a wide spectral range encompassing near-infrared to radio continuum wavelengths. Various geometric and physical details of the YSOs are determined from this modelling scheme. In order to assess the effectiveness of this self-consistent scheme, three young Galactic star forming regions associated with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test cases. They cover a large range of luminosity (≈\approx 40). The modelling of their SEDs has led to information about various details of these sources, e.g. embedded energy source, cloud structure & size, density distribution, composition & abundance of dust grains etc. In all three cases, the best fit model corresponds to the uniform density distribution.Comment: AAMS style manuscript with 3 tables (in a separate file) and 4 figures. To appear in Journal of Astronophysics & Astronom
    • 

    corecore