8 research outputs found

    Selenium recovery from wastewater by the green microalgae Chlorella vulgaris and Scenedesmus sp.

    Get PDF
    Selenium (Se) is an important element for many living organisms and its supplementation may be needed in food, feed, and soil to make up for its deficiency. At the same time, high selenium concentrations can harm the environment, thus its management in sewage and the study of its removal from waste streams are important. Microalgae-based systems may be used for wastewater treatment and nutrients recovery, while producing biomass for bioproducts or bioenergy. In this study, Chlorella vulgaris and Scenedesmus sp. grown in urban wastewater with different selenium concentrations (50–1000 µg Se/L) were evaluated for their resistance and selenium removal/recovery efficiency. Chlorella vulgaris and Scenedesmus sp. were able to remove up to 43 and 52 % of Se from wastewater, respectively. Chlorella vulgaris accumulated up to 323 mgSe/kg DW (in urban wastewater with 1000 µg Se/L). The Se-rich biomass produced may be applied to the supplementation of animal feed or used for biofortification of crops.This research was supported by the Science Foundation Ireland (SFI) through the SFI Research Professorship Programme Innovative Energy Technologies for Biofuels, Bioenergy and a Sustainable Irish Bioeconomy (IETSBIO3; grant number 15/RP/2763) the Research Infrastructure research grant Platform for Biofuel Analysis (Grant Number 16/RI/3401). Ivet Ferrer and Enrica Uggetti are grateful to the Government of Catalonia (Consolidated Research Group 2017 SGR 1029) and Enrica Uggetti acknowledges the Spanish Ministry of Science, Innovation and Universities (RYC2018-025514-I).Peer ReviewedPostprint (published version

    Biomass valorization via pyrolysis in microalgae-based wastewater treatment: challenges and opportunities for a circular bioeconomy

    Get PDF
    Microalgae-based wastewater treatment technology is a sustainable and environmentally friendly alternative to conventional treatment systems. The biomass produced during microalgae-based wastewater treatment can be valorized via pyrolysis to generate multiple valuable products, such as biochar, bio-oil, and pyrolytic gas. This study summarizes the potential of pyrolysis for valorizing microalgal biomass produced from wastewater treatment. It shows how pyrolysis can provide a variety of valuable products, the composition of which is influenced by the type of microalgae used, the operating conditions of the pyrolysis process, and the presence of contaminants in the biomass. It also highlights the main challenges to be addressed before pyrolysis can be adopted to valorize microalgae biomass. These challenges include the high energy requirements of pyrolysis, the need for further research to optimize the process, and the potential for pyrolysis to produce harmful emissions. Despite this, pyrolysis appears as a promising technology with potential to contribute to the sustainable development of a circular economy. Future research should address these challenges and develop more efficient and environmentally friendly pyrolysis processes.Cyan2Bio, PID2021-126564OB-C32;info:eu-repo/semantics/publishedVersio

    Isolation and characterization of novel chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications

    Get PDF
    Microalgae are widely used as food supplements due to their high protein content, essential fatty acids and amino acids as well as carotenoids. The addition of microalgal biomass to food products (e.g., baked confectioneries) is a common strategy to attract novel consumers. However, organoleptic factors such as color, taste and smell can be decisive for the acceptability of foods supplemented with microalgae. The aim of this work was to develop chlorophyll-deficient mutants of Chlorella vulgaris by chemically induced random mutagenesis to obtain biomass with different pigmentations for nutritional applications. Using this strategy, two C. vulgaris mutants with yellow (MT01) and white (MT02) color were successfully isolated, scaled up and characterized. The changes in color of MT01 and MT02 mutant strains were due to an 80 and 99% decrease in their chlorophyll contents, respectively, as compared to the original wild type (WT) strain. Under heterotrophic growth, MT01 showed a growth performance similar to that of the WT, reaching a concentration of 5.84 and 6.06 g L-1, respectively, whereas MT02 displayed slightly lower growth (4.59 g L-1). When grown under a light intensity of 100 μmol m-2 s-1, the pigment content in MT01 increased without compromising growth, while MT02 was not able to grow under this light intensity, a strong indication that it became light-sensitive. The yellow color of MT01 in the dark was mainly due to the presence of the xanthophyll lutein. On the other hand, phytoene was the only carotenoid detected in MT02, which is known to be colorless. Concomitantly, MT02 contained the highest protein content, reaching 48.7% of DW, a 60% increase as compared to the WT. MT01 exhibited a 30% increase when compared to that of the WT, reaching a protein content of 39.5% of DW. Taken together, the results strongly suggest that the partial abrogation of pigment biosynthesis is a factor that might promote higher protein contents in this species. Moreover, because of their higher protein and lower chlorophyll contents, the MT01 and MT02 strains are likely candidates to be feedstocks for the development of novel, innovative food supplements and foods.FCT: UIDB/04085/2020info:eu-repo/semantics/publishedVersio

    Biologically Active Metabolites Synthesized by Microalgae

    No full text
    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences

    Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content

    No full text
    In the search for alternative carbon sources for microalgae cultivation, pentoses can be considered interesting alternatives since the most abundant global source of renewable biomass is lignocellulosic waste, which contains significant quantities of pentoses. However, the use of pentoses (C5) in the cultivation of microalgae is still not widely studied and only recently the first metabolic pathway for pentose absorption in microalgae was proposed. So, the objective of this work was to evaluate if the use of pentoses affects the growth and carbohydrates content of Chlorella minutissima, Chlorella vulgaris, Chlorella homosphaera and Dunaliella salina. The kinetic parameters, carbohydrate and protein content and the theoretical potential for ethanol production were estimated for all strains. The highest cellular concentrations (1.25 g L-1) were obtained for D. salina with 5% of pentoses. The addition of pentoses leads to high levels of carbohydrates for C. minutissima (58.6%) cultured with 5% of pentoses, and from this biomass, it is possible to determine a theoretical production of ethanol of 38 mL per 100 g of biomass. The pentoses affect the growth and the biomass composition of the studied strains, generating biomass with potential use for bioethanol production40810621070COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPE

    Effect of Photoperiod and Glycerol Supplementation on the Biomass Productivity and Protein Production of Spirulina sp. LEB 18 Cultures

    No full text
    Changes in nutritional and lighting conditions to obtain compounds of interest and biomass via microalgal cultures are among the main foci of studies in algal biotechnology. Growth medium supplementation using organic compounds, such as glycerol, is a promising approach for increasing biomass productivity and the viability of microalgal cultivation and adding value to byproducts of the biodiesel industry. In this study, the influence of crude glycerol on Spirulina sp. LEB 18 was investigated via culturing using different photoperiods, and its effect on biomass composition and cell growth was evaluated. The microalgae were subjected to three photoperiods (continuous light, 24:0; 12 h light and 12 h dark, 12:12; and no illumination, 0:24) and crude glycerol supplementation (2.5 g L−1); better productivity and biomass concentrations were obtained in cultures with a 12:12 photoperiod (28.36 mg L−1 h−1 and 1.24 g L−1, respectively). Under this condition, the highest protein yield was achieved (647.3 mg L−1, 52.2% w w−1), and the obtained biomass showed favorable characteristics for applications in animal feed enrichment
    corecore