196 research outputs found

    Most diverse, most neglected: weevils (Coleoptera: Curculionoidea) are ubiquitous specialized brood-site pollinators of tropical flora

    Get PDF
    In tropical environments, and especially tropical rainforests, a major part of pollination services is provided by diverse insect lineages. Unbeknownst to most, beetles, and more specifically hyperdiverse weevils (Coleoptera: Curculionoidea), play a substantial role there as specialized mutualist brood pollinators. The latter contrasts with a common view where they are only regarded as plant antagonists. This study aims to provide a comprehensive understanding of what is known about plant-weevil brood-site mutualistic interactions, through a review of the known behavioral, morphological and physiological features found in these systems, and the identification of potential knowledge gaps. To date, plant-weevil associations have been described or indicated in no less than 600 instances. Representatives of major plant lineages are involved in these interactions, which have emerged independently at least a dozen times. Strikingly, these mutualistic interactions are associated with a range of convergent traits in plants and weevils. Plants engaged in weevil-mediated pollination are generally of typical cantharophilous type exhibiting large, white and fragrant flowers or inflorescences and they also show specific structures to host the larval stages of their specialist pollinators. Another characteristic feature is that flowers often perform thermogenesis and exhibit a range of strategies to separate sexual phases, either spatially or temporally. Conversely, lineages of brood-site weevil pollinators present numerous shared behavioral and physiological traits, and often form multispecific assemblages of closely related species on a single host; recent studies also revealed that they generally display a high degree of phylogenetic niche conservatism. This pollination mutualism occurs in all tropical regions, and the contrasts between the known and expected diversity of these systems suggests that a wide range of interactions remain to be described globally. Our early estimates of the species richness of the corresponding weevil clades and the marked pattern of phylogenetic niche conservatism of host use further suggest that weevil-based pollination far exceeds the diversity of other brood-site mutualistic systems, which are generally restricted to one or a few groups of plants. As such, weevil pollinators constitute a relevant model to explore the emergence and evolution of specialized brood-site pollination systems in the tropics

    Estrutura genética espacial de populações remasnescentes de algodoeiro arbóreo (Gossypium hirsutum L. R. Marie Gaçamte Hutch) do Estado da Paraíba, Brasil.

    Get PDF
    O algodoeiro arbóreo ou mocó é uma variedade local de algodão alotetraplóide cultivado pertencente à espécie Gossypium hirsutum r. marie galante Hutch que se desenvolveu a partir de formas cultivadas primitivas no Nordeste do Brasil. Caracterizar a estrutura genética espacial das populações remanescentes deste algodoeiro pode relevante para conservação genética e futuros programas de melhoramento, pois são importantes para comunidades agrícolas locais e apresentam características agronômicas potencialmente importantes para melhoria de cultivares modernas de algodão herbáceo. Assim, objetivou-se com este estudo determinar a estrutura genética espacial entre populações cultivadas de algodoeiro arbóreo do estado da Paraíba, Brasil. Foram selecionadas para o estudo quatro populações remanescentes em diferentes municípios do estado da Paraíba, Brasil.Resumos apresentado no SIMPÓSIO DA REDE DE RECURSOS GENÉTICOS VEGETAIS DO NORDESTE, 4., 2019, Areias. Anais..

    Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion

    Get PDF
    BACKGROUND: Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people's behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. OBJECTIVE: We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. DISCUSSION: We present three infectious vector-borne diseases-Chagas, leishmaniasis, and malaria-and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. CONCLUSION: Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed.National Council for Scientific and Technological Development (CNPq), Brasilia, Brazi

    Novel ocellatin peptides mitigate LPS-induced ROS formation and NF-kB activation in microglia and hippocampal neurons

    Get PDF
    © The Author(s) 2020. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per-mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Cutaneous secretions of amphibians have bioactive compounds, such as peptides, with potential for biotechnological applications. Therefore, this study aimed to determine the primary structure and investigate peptides obtained from the cutaneous secretions of the amphibian, Leptodactylus vastus, as a source of bioactive molecules. The peptides obtained possessed the amino acid sequences, GVVDILKGAAKDLAGH and GVVDILKGAAKDLAGHLASKV, with monoisotopic masses of [M + H]± = 1563.8 Da and [M + H]± = 2062.4 Da, respectively. The molecules were characterized as peptides of the class of ocellatins and were named as Ocellatin-K1(1-16) and Ocellatin-K1(1-21). Functional analysis revealed that Ocellatin-K1(1-16) and Ocellatin-K1(1-21) showed weak antibacterial activity. However, treatment of mice with these ocellatins reduced the nitrite and malondialdehyde content. Moreover, superoxide dismutase enzymatic activity and glutathione concentration were increased in the hippocampus of mice. In addition, Ocellatin-K1(1-16) and Ocellatin-K1(1-21) were effective in impairing lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) formation and NF-kB activation in living microglia. We incubated hippocampal neurons with microglial conditioned media treated with LPS and LPS in the presence of Ocellatin-K1(1-16) and Ocellatin-K1(1-21) and observed that both peptides reduced the oxidative stress in hippocampal neurons. Furthermore, these ocellatins demonstrated low cytotoxicity towards erythrocytes. These functional properties suggest possible to neuromodulatory therapeutic applications.Alexandra Plácido is a recipient of a post-doctoral grant from the project FCT (PTDC/BII-BIO/31158/2017). Renato Socodato and Camila Cabral Portugal hold postdoctoral fellowships from FCT (Refs: SFRH/BPD/91833/2012 and FRH/BPD/91962/2012, respectively). This work was funded through project UID/QUI/50006/2013-POCI/01/0145/FEDER/007265 (LAQV/REQUIMTE) with financial support from FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT 2020info:eu-repo/semantics/publishedVersio
    corecore