9,475 research outputs found

    On the strategy frequency problem in batch Minority Games

    Get PDF
    Ergodic stationary states of Minority Games with S strategies per agent can be characterised in terms of the asymptotic probabilities ϕa\phi_a with which an agent uses aa of his strategies. We propose here a simple and general method to calculate these quantities in batch canonical and grand-canonical models. Known analytic theories are easily recovered as limiting cases and, as a further application, the strategy frequency problem for the batch grand-canonical Minority Game with S=2 is solved. The generalization of these ideas to multi-asset models is also presented. Though similarly based on response function techniques, our approach is alternative to the one recently employed by Shayeghi and Coolen for canonical batch Minority Games with arbitrary number of strategies.Comment: 17 page

    On the transition to efficiency in Minority Games

    Full text link
    The existence of a phase transition with diverging susceptibility in batch Minority Games (MGs) is the mark of informationally efficient regimes and is linked to the specifics of the agents' learning rules. Here we study how the standard scenario is affected in a mixed population game in which agents with the `optimal' learning rule (i.e. the one leading to efficiency) coexist with ones whose adaptive dynamics is sub-optimal. Our generic finding is that any non-vanishing intensive fraction of optimal agents guarantees the existence of an efficient phase. Specifically, we calculate the dependence of the critical point on the fraction qq of `optimal' agents focusing our analysis on three cases: MGs with market impact correction, grand-canonical MGs and MGs with heterogeneous comfort levels.Comment: 12 pages, 3 figures; contribution to the special issue "Viewing the World through Spin Glasses" in honour of David Sherrington on the occasion of his 65th birthda

    Von Neumann's expanding model on random graphs

    Full text link
    Within the framework of Von Neumann's expanding model, we study the maximum growth rate r achievable by an autocatalytic reaction network in which reactions involve a finite (fixed or fluctuating) number D of reagents. r is calculated numerically using a variant of the Minover algorithm, and analytically via the cavity method for disordered systems. As the ratio between the number of reactions and that of reagents increases the system passes from a contracting (r1). These results extend the scenario derived in the fully connected model (D\to\infinity), with the important difference that, generically, larger growth rates are achievable in the expanding phase for finite D and in more diluted networks. Moreover, the range of attainable values of r shrinks as the connectivity increases.Comment: 20 page

    Constrained Allocation Flux Balance Analysis

    Get PDF
    New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an "ensemble averaging" procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws.Comment: 21 pages, 6 figures (main) + 33 pages, various figures and tables (supporting); for the supplementary MatLab code, see http://tinyurl.com/h763es

    Rashba spin-orbit coupling and spin precession in carbon nanotubes

    Get PDF
    The Rashba spin-orbit coupling in carbon nanotubes and its effect on spin-dependent transport properties are analyzed theoretically. We focus on clean non-interacting nanotubes with tunable number of subbands NN. The peculiar band structure is shown to allow in principle for Datta-Das oscillatory behavior in the tunneling magnetoresistance as a function of gate voltage, despite the presence of multiple bands. We discuss the conditions for observing Datta-Das oscillations in carbon nanotubes.Comment: 12 pages, published versio

    Statistical mechanics for metabolic networks during steady-state growth

    Get PDF
    Which properties of metabolic networks can be derived solely from stoichiometric information about the network's constituent reactions? Predictive results have been obtained by Flux Balance Analysis (FBA), by postulating that cells set metabolic fluxes within the allowed stoichiometry so as to maximize their growth. Here, we generalize this framework to single cell level using maximum entropy models from statistical physics. We define and compute, for the core metabolism of Escherichia coli, a joint distribution over all fluxes that yields the experimentally observed growth rate. This solution, containing FBA as a limiting case, provides a better match to the measured fluxes in the wild type and several mutants. We find that E. coli metabolism is close to, but not at, the optimality assumed by FBA. Moreover, our model makes a wide range of predictions: (i) on flux variability, its regulation, and flux correlations across individual cells; (ii) on the relative importance of stoichiometric constraints vs. growth rate optimization; (iii) on quantitative scaling relations for singe-cell growth rate distributions. We validate these scaling predictions using data from individual bacterial cells grown in a microfluidic device at different sub-inhibitory antibiotic concentrations. Under mild dynamical assumptions, fluctuation-response relations further predict the autocorrelation timescale in growth data and growth rate adaptation times following an environmental perturbation.Comment: 12 pages, 4 figure
    corecore