17 research outputs found

    The Heat of Nervous Conduction: A Thermodynamic Framework

    Full text link
    Early recordings of nervous conduction revealed a notable thermal signature associated with the electrical signal. The observed production and subsequent absorption of heat arise from physicochemical processes that occur at the cell membrane level during the conduction of the action potential. In particular, the reversible release of electrical energy stored as a difference of potential across the cell membrane appears as a simple yet consistent explanation for the heat production, as proposed in the "Condenser Theory." However, the Condenser Theory has not been analyzed beyond the analogy between the cell membrane and a parallel-plate capacitor, i.e. a condenser, which cannot account for the magnitude of the heat signature. In this work, we use a detailed electrostatic model of the cell membrane to revisit the Condenser Theory. We derive expressions for free energy and entropy changes associated with the depolarization of the membrane by the action potential, which give a direct measure of the heat produced and absorbed by neurons. We show how the density of surface charges on both sides of the membrane impacts the energy changes. Finally, considering a typical action potential, we show that if the membrane holds a bias of surface charges, such that the internal side of the membrane is 0.05 C m2^{-2} more negative than the external side, the size of the heat predicted by the model reaches the range of experimental values. Based on our study, we identify the change in electrical energy of the membrane as the primary mechanism of heat production and absorption by neurons during nervous conduction

    Small Molecule Mediated Proliferation of Primary Retinal Pigment Epithelial Cells

    No full text
    Retinal pigment epithelial (RPE) cells form a monolayer adjacent to the retina and play a critical role in the visual light cycle. Degeneration of RPE cells results in retinal disorders such as age-related macular degeneration. Cell transplant strategies have potential therapeutic value for such disorders; however, risks associated with an inadequate supply of donor cells limit their therapeutic success. The identification of factors that proliferate RPE cells <i>ex vivo</i> could provide a renewable source of cells for transplantation. Here, we report that a small molecule (WS3) can reversibly proliferate primary RPE cells isolated from fetal and adult human donors. Following withdrawal of WS3, RPE cells differentiate into a functional monolayer, as exhibited by their expression of mature RPE genes and phagocytosis of photoreceptor outer segments. Furthermore, chemically expanded RPE cells preserve vision when transplanted into dystrophic Royal College of Surgeons (RCS) rats, a well-established model of retinal degeneration
    corecore