5,534 research outputs found

    Hamilton-Jacobi Theory in k-Symplectic Field Theories

    Full text link
    In this paper we extend the geometric formalism of Hamilton-Jacobi theory for Mechanics to the case of classical field theories in the k-symplectic framework

    Time-dependent Mechanics and Lagrangian submanifolds of Dirac manifolds

    Full text link
    A description of time-dependent Mechanics in terms of Lagrangian submanifolds of Dirac manifolds (in particular, presymplectic and Poisson manifolds) is presented. Two new Tulczyjew triples are discussed. The first one is adapted to the restricted Hamiltonian formalism and the second one is adapted to the extended Hamiltonian formalism

    Nonholonomic constraints in kk-symplectic Classical Field Theories

    Get PDF
    A kk-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories.Comment: 27 page

    Higher-order Cartan symmetries in k-symplectic field theory

    Get PDF
    For k-symplectic Hamiltonian field theories, we study infinitesimal transformations generated by certain kinds of vector fields which are not Noether symmetries, but which allow us to obtain conservation laws by means of a suitable generalization of the Noether theorem.Comment: 11 page

    Singular Lagrangian Systems on Jet Bundles

    Get PDF
    The jet bundle description of time-dependent mechanics is revisited. The constraint algorithm for singular Lagrangians is discussed and an exhaustive description of the constraint functions is given. By means of auxiliary connections we give a basis of constraint functions in the Lagrangian and Hamiltonian sides. An additional description of constraints is also given considering at the same time compatibility, stability and second-order condition problems. Finally, a classification of the constraints in first and second class is obtained using a cosymplectic geometry setting. Using the second class constraints, a Dirac bracket is introduced, extending the well-known construction by Dirac.Comment: 65 pages. LaTeX fil
    corecore