21 research outputs found

    Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity.

    Get PDF
    Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1's ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1's ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions

    The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions

    Get PDF
    Vascular homoeostasis, development and disease critically depend on the regulation of endothelial cell-cell junctions. Here we uncover a new role for the F-BAR protein pacsin2 in the control of VE-cadherin-based endothelial adhesion. Pacsin2 concentrates at focal adherens junctions (FAJs) that are experiencing unbalanced actomyosin-based pulling. FAJs move in response to differences in local cytoskeletal geometry and pacsin2 is recruited consistently to the trailing end of fast-moving FAJs via a mechanism that requires an intact F-BAR domain. Photoconversion, photobleaching, immunofluorescence and super-resolution microscopy reveal polarized dynamics, and organization of junctional proteins between the front of FAJs and their trailing ends. Interestingly, pacsin2 recruitment inhibits internalization of the VE-cadherin complex from FAJ trailing ends and is important for endothelial monolayer integrity. Together, these findings reveal a novel junction protective mechanism during polarized trafficking of VE-cadherin, which supports barrier maintenance within dynamic endothelial tissue

    The Human Minor Histocompatibility Antigen1 Is a RhoGAP

    Get PDF
    The human minor Histocompatibility Antigen HMHA-1 is a major target of immune responses after allogeneic stem cell transplantation applied for the treatment of leukemia and solid tumors. The restriction of its expression to hematopoietic cells and many solid tumors raised questions regarding its cellular functions. Sequence analysis of the HMHA-1 encoding HMHA1 protein revealed the presence of a possible C-terminal RhoGTPase Activating Protein (GAP) domain and an N-terminal BAR domain. Rho-family GTPases, including Rac1, Cdc42, and RhoA are key regulators of the actin cytoskeleton and control cell spreading and migration. RhoGTPase activity is under tight control as aberrant signaling can lead to pathology, including inflammation and cancer. Whereas Guanine nucleotide Exchange Factors (GEFs) mediate the exchange of GDP for GTP resulting in RhoGTPase activation, GAPs catalyze the low intrinsic GTPase activity of active RhoGTPases, resulting in inactivation. Here we identify the HMHA1 protein as a novel RhoGAP. We show that HMHA1 constructs, lacking the N-terminal region, negatively regulate the actin cytoskeleton as well as cell spreading. Furthermore, we show that HMHA1 regulates RhoGTPase activity in vitro and in vivo. Finally, we demonstrate that the HMHA1 N-terminal BAR domain is auto-inhibitory as HMHA1 mutants lacking this region, but not full-length HMHA1, showed GAP activity towards RhoGTPases. In conclusion, this study shows that HMHA1 acts as a RhoGAP to regulate GTPase activity, cytoskeletal remodeling and cell spreading, which are crucial functions in normal hematopoietic and cancer cells

    Control of Rho GTPase function by BAR-domains

    Get PDF
    Cytoskeletal dynamics are key to the establishment of cell polarity and the consequent coordination of protrusion and contraction that drives cell migration. During these events, the actin and microtubule cytoskeleton act in concert with the cellular machinery that controls endo-and exocytosis, thus regulating polarized traffic of membranes and membrane-associated proteins. Small GTPases of the Rho family orchestrate cytoskeletal dynamics. Rho GTPase signaling is tightly regulated and mislocalization or constitutive activation may lead to, for example, morphogenetic abnormalities, tumor cell metastasis or apoptosis. There is increasing evidence that traffic to and from the plasma membrane constitutes an important mechanism controlling Rho GTPase activation and signaling. This brief overview discusses a group of proteins that function at the interface between membrane dynamics and RhoGTPase signaling. These proteins all share a so-called BAR domain, which is a lipid and protein binding region that also harbors membrane deforming activity. In the past 15 years, a growing number of BAR domain proteins have been identified and found to regulate Rho GTPase signaling. The studies discussed here define several modes of RhoGTPase regulation through BAR-domain containing proteins, identifying the BAR domain as an important regulatory unit bridging membrane traffic and cytoskeletal dynamics

    The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration

    No full text
    The Rac1 GTPase controls cytoskeletal dynamics and is a key regulator of cell spreading and migration mediated by signaling through effector proteins, such as the PAK kinases and the Scar and WAVE proteins. We previously identified a series of regulatory proteins that associate with Rac1 through its hypervariable C-terminal domain, including the Rac1 activator β-Pix (also known as Rho guanine-nucleotide-exchange factor 7) and the membrane adapter caveolin-1. Here, we show that Rac1 associates, through its C-terminus, with the F-BAR domain protein PACSIN2, an inducer of membrane tubulation and a regulator of endocytosis. We show that Rac1 localizes with PACSIN2 at intracellular tubular structures and on early endosomes. Active Rac1 induces a loss of PACSIN2-positive tubular structures. By contrast, Rac1 inhibition results in an accumulation of PACSIN2-positive tubules. In addition, PACSIN2 appears to regulate Rac1 signaling; siRNA-mediated loss of PACSIN2 increases the levels of Rac1-GTP and promotes cell spreading and migration in a wound healing assay. Moreover, ectopic expression of PACSIN2 reduces Rac1-GTP levels in a fashion that is dependent on the PACSIN2-Rac1 interaction, on the membrane-tubulating capacity of PACSIN2 and on dynamin. These data identify the BAR-domain protein PACSIN2 as a Rac1 interactor that regulates Rac1-mediated cell spreading and migratio

    Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement

    No full text
    Danger patterns on microbes or damaged host cells bind and activate C1, inducing innate immune responses and clearance through the complement cascade. How these patterns trigger complement initiation remains elusive. Here, we present cryo–electron microscopy analyses of C1 bound to monoclonal antibodies in which we observed heterogeneous structures of single and clustered C1–immunoglobulin G1 (IgG1) hexamer complexes. Distinct C1q binding sites are observed on the two Fc-CH2 domains of each IgG molecule. These are consistent with known interactions and also reveal additional interactions, which are supported by functional IgG1-mutant analysis. Upon antibody binding, the C1q arms condense, inducing rearrangements of the C1r2s2 proteases and tilting C1q’s cone-shaped stalk. The data suggest that C1r may activate C1s within single, strained C1 complexes or between neighboring C1 complexes on surfaces

    Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts

    No full text
    The Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4 (Nedd4). This interaction requires the hypervariable C-terminal domain of Rac1 and the WW domains of Nedd4. Activated Rac1 colocalises with endogenous Nedd4 at epithelial cell-cell contacts. Reduction of Nedd4 expression by shRNA results in reduced transepithelial electrical resistance (TER) and concomitant changes in the distribution of adherens and tight junction markers. Conversely, expression of Nedd4 promotes TER, suggesting that Nedd4 cooperates with Rac1 in the induction of junctional maturation. We found that Nedd4, but not Nedd4-2, mediates the ubiquitylation and degradation of the adapter protein dishevelled-1 (Dvl1), the expression of which negatively regulates cell-cell contact. Nedd4-mediated ubiquitylation requires its binding to the C-terminal domain of Dvl1, comprising the DEP domain, and targets an N-terminal lysine-rich region upstream of the Dvl1 DIX domain. We found that endogenous Rac1 colocalises with endogenous Dvl1 in intracellular puncta as well as on cell-cell junctions. Finally, activated Rac1 was found to stimulate Nedd4 activity, resulting in increased ubiquitylation of Dvl1. Together, these data reveal a novel Rac1-dependent signalling pathway that, through Nedd4-mediated ubiquitylation of Dvl1, stimulates the maturation of epithelial cell-cell contacts

    The HMHA1 GAP domain negatively affects cell spreading.

    No full text
    <p>Cell spreading was measured by Electrical Cell-substrate Impedance Sensing (ECIS) following seeding of 100.000 cells on fibronectin-coated electrodes. Left panel: A significant decrease in electrical resistance, as a measure of cell spreading, was observed in HeLa cells expressing HMHA1 C1-GAPtail (black), C1-GAP (light green), and GAPtail (grey) compared to control cells (red). Ectopic expression of HMHA1 full-length (blue), N-term (dark green), and GAP (magenta) did not affect cell spreading. Right panel: Relative cell spreading at 60 minutes post-seeding. Data are mean values of three independent experiments. Error bars indicate SEM. ns, not significant, ** p<0.01, *** p<0.001.</p
    corecore