28 research outputs found

    Anti-retinal autoantibodies in experimental ocular and systemic toxoplasmosis

    Get PDF
    Background: Patients with ocular toxoplasmosis (OT) develop autoreactivity to several retinal antigens, including retinal S-antigen. By establishing an experimental rabbit model of systemic and of primary and secondary ocular toxoplasmosis, we wished to investigate the onset and development of humoral response to retinal S-antigen. Methods: Of twelve infection-naïve rabbits, six were left untreated, and the other six were infected subcutaneously with 5,000 tachyzoites of the highly virulent, non-cyst-forming BK-strain of Toxoplasma gondii. Three months later, the left eye of each animal was infected transvitreally with 5,000 tachyzoites of the same strain. The right eye of each rabbit served as an uninfected control. Blood and aqueous humor were collected prior to infection, and up to 90days thereafter. Using the ELISA technique, all samples were analyzed in parallel for total IgG, and antibodies against toxoplasmic, bovine retinal S-antigen and peptide 35 from human S-antigen. Results: In infection-naïve rabbits Toxoplasma-specific antibodies were detected 10 to15days after systemic and ocular infection. Serum antibodies against retinal S-antigen and peptide 35 were not detected in response to systemic Toxoplasma infection. After ocular challenge, aqueous-humour levels of antibodies against retinal S-antigen and peptide 35 in the infected eye began to rise 10 to 15days later in infection-naïve, but not in infection-immunized animals. During the early post-infection period, the concentrations of anti-retinal antibodies in the infected eye correlated with the severity of inflammatory tissue destruction, but returned to baseline later even though the inflammatory response persisted. In the uninfected partner eye, concentrations of anti-retinal and toxoplasmic antibodies did not correlate with each other. Conclusion: Our data afford no evidence of similarities between toxoplasmic and retinal antigens, nor of infection-induced humoral autoimmunity. They indicate rather that retinal autoantigens are liberated in the context of inflammatory tissue destruction due to ocular toxoplasmosi

    A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    Get PDF
    Obesity and metabolic syndrome results from a complex interaction between genetic and environmetal factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator lean (L) strain. To enrich for adipose tissue obesity genes a ˝snap-shot˝ pooled-sample transcriptome comparison of key fat depots and non adipose tissue (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue.A number of novel obesity candidate genes were also identified (Thbs1, Ppp1rd, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred rolesin fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a dictinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathaways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity

    The effects of intraocular injection of interleukin-13 on endotoxin-induced uveitis in rats

    No full text
    PURPOSE. Interleukin (IL)-13 is a strong immunomodulatory cytokine that inhibits macrophages from secreting proinflammatory mediators. This study was conducted to investigate the effect of intraocular injection of IL-13 on the development of endotoxin-induced uveitis (EIU) in the Lewis rat. METHODS. One injection into the anterior chamber of recombinant human IL-13 (6 ng in 10 l saline) was performed either simultaneously with a single injection of lipopolysaccharide (LPS) from Salmonella typhimurium into the footpad or 6 hours before the IL-13 injection. EIU was evaluated by slit lamp examination at 6, 16, and 24 hours after LPS injection. Counts of inflammatory cells were performed on cryostat sections after specific immunostaining. Anterior chamber paracentesis was performed, and kinetic analysis of the IL-13 injected in the anterior chamber was performed by ELISA. Cytokine and chemokine gene expression in the iris-ciliary body and the retina was evaluated by reverse transcription-polymerase chain reaction. RESULTS. A significant inhibition of ocular inflammation was observed in IL-13-treated rats at 16 and 24 hours after LPS injection. Unilateral injection of IL-13 inhibited EIU only in the injected eye. High levels of IL-13 were detected in the aqueous humor at 2 hours after local IL-13 injection to remain high up to 18 hours. In contrast, IL-13 was not detected in the corresponding sera. Quantitative analysis of inflammatory cells in ocular tissues showed a significant decrease in OX-42 ϩ cells (microglia, activated macrophages, dendritic cells, and polymorphonuclear leukocytes) and ED1 ϩ cells (monocytes-macrophages and dendritic cells) in treated rats. A decreased expression of TNF-␣, IL-1␤, IL-6, monocyte chemoattractant protein (MCP)-1, and macrophage inflammatory protein (MIP)-2 mRNAs was observed in the iris-ciliary body and the retina from IL-13-treated rats, whereas IFN-␥ was upregulated in the iris-ciliary body. CONCLUSIONS. Injection of IL-13 into the anterior chamber may inhibit the ocular inflammation induced by LPS injection by reducing intraocular cytokine and chemokine mRNA expression in ocular tissues. (Invest Ophthalmol Vis Sci. 2001;42: 2022-2030 E ndotoxin-induced uveitis (EIU) is an animal model of acute ocular inflammation induced in the rat by systemic or local injection of lipopolysaccharide (LPS) from Gram-negative bacterial cell walls. 3,7-9 The injection of endotoxin induces systemic and local ocular inflammatory manifestations that have been partly attributed to the synthesis of proinflammatory cytokines and chemokines. Indeed, systemic injection of LPS stimulates the intraocular production of different cytokines, mainly IL-1, IL-6, IFN-␥, and TNF-␣, 7,10 -14 and chemokines, such as monocyte chemoattractant protein (MCP)-1, a prototype of CC chemokine; IL-8, a prototype of CXC chemokine; macrophage inflammatory protein (MIP)-2, a rat functional IL-8 equivalent; and cytokineinduced neutrophil chemoattractant (CINC), a peptide of the CXC family. IL-13 is an anti-inflammatory cytokine produced by T helper (Th)2 lymphocytes, 20 which inhibits the synthesis of proinflammatory cytokines and chemokines (IL-1, IL-6, TNF-␣, IL-8, and MIP-1␣, a CC chemokine) by LPS-activated monocytes. 21-24 IL-13 has been shown to induce an upregulation of IL-1-receptor antagonist (IL-1ra) 26 The inhibitory effect of IL-13 has been demonstrated in Th1 autoimmune diseases

    Protein kinase Czeta (PKCzeta) regulates ocular inflammation and apoptosis in endotoxin-induced uveitis (EIU): signaling molecules involved in EIU resolution by PKCzeta inhibitor and interleukin-13.: Protein kinase C? in endotoxin-induced-uveitis

    No full text
    We show that inhibitory effect of interleukin-13 on endotoxin-induced uveitis in the Lewis rat is dependent on signaling activity of protein kinase Czeta (PKCzeta). To understand the effect of interleukin-13 or PKCzeta inhibitor treatment, the activation status of rat bone marrow-derived macrophages was studied in vitro. At 6 hours, lipopolysaccharide-stimulated macrophages produced tumor necrosis factor-alpha (TNF-alpha) with nuclear factor kappaB (NF-kappaB)/p65 expression. Treatment led to absence of NF-kappaB/p65 expression and low levels of TNF-alpha, suggesting accelerated inactivation of macrophages. At 24 hours after lipopolysaccharide stimulation, nuclear NF-kappaB/p65 decreased and nuclear NF-kappaB/p50 increased, associated with nuclear BCL-3 and a low level of TNF-alpha, indicating onset of spontaneous resolution. Treatment limited PKCzeta cleavage, with expression of nuclear NF-kappaB/p50 and BCL-3 and low nuclear NF-kappaB/p65 promoting macrophage survival, as evidenced by Bcl-2 expression. At 24 hours, intraocular treatment decreased membranous expression of PKCzeta by ocular cells, reduced vascular leakage with low nitric-oxide synthase-2 expression in vascular endothelial cells, and limited inflammatory cell infiltration with decreased intraocular TNF-alpha, interleukin-6, and nitric-oxide synthase-2 mRNA. Importantly, treatment decreased nuclear NF-kappaB/p65, increased transforming growth factor-beta2, and reduced caspase 3 expression in infiltrating macrophages, implying a change of their phenotype within ocular microenvironment. Treatment accelerated endotoxin-induced uveitis resolution through premature apoptosis of neutrophils related to high expression of toll-like receptor 4 and caspase 3
    corecore