80 research outputs found
SPACERGY:
SPACERGY builds upon the need for planning authorities to develop new models to implement energy transition strategies in the urban environment, departing from the exploitation or reciprocity between space and energy systems. Several policies have been made by each EU nation, but effective and practical tools to guide the urban transformations towards a carbon-neutral future present several challenges. The first challenge is to confront long term changes in envisioning how a specific socio-cultural context can respond to the application of solutions for energy efficiency. Secondly, the engagement of communities in bottom-up approaches mainly includes the sphere of urban planning that underestimates the importance of relating spatial transformations with the energy performances generated in the urban environment. The third challenge regards the tools used for the assessment of the energy performance and the necessity of enlarging the scale in which energy demand is analyzed, from the scale of the building to that of the district. In this context, the project explores the role of mobility, spatial morphologies, infrastructural elements and local community participation in regards to the smart use of local resources. The project addresses a knowledge gap in relation to interactions and synergies between spatial programming, energy and mobility systems planning and stakeholder involvement necessary to improve models of development and governance of urban transformations.
Based on detailed spatial morphology and energy use modeling, SPACERGY develops new toolsets and guidelines necessary to advance the implementation of energy-efficient urban districts. New toolsets are tested in three urban areas under development in the cities of Zurich, Almere, and Bergen, acting as living laboratories for real-time research and action in collaboration with local stakeholders. The results of this research project support planners and decision-makers to facilitate the transition of their communities to more efficient, livable and thus prosperous urban environments
Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment: Insights from a Detergent Case Study within OMNIITOX
Background and Objective: In the OMNIITOX project 11 partners have the common objective to improve environmental management tools for the assessment of (eco)toxicological impacts. The detergent case study aims at: i) comparing three Procter &c Gamble laundry detergent forms (Regular Powder-RP, Compact Powder-CP and Compact Liquid-CL) regarding their potential impacts on aquatic ecotoxicity, ii) providing insights into the differences between various Life Cycle Impact Assessment (LCIA) methods with respect to data needs and results and iii) comparing the results from Life Cycle Assessment (LCA) with results from an Environmental Risk Assessment (ERA). Material and Methods: The LCIA has been conducted with EDIP97 (chronic aquatic ecotoxicity) [1], USES-LCA (freshwater and marine water aquatic ecotoxicity, sometimes referred to as CML2001) [2, 3] and IMPACT 2002 (covering freshwater aquatic ecotoxicity) [4]. The comparative product ERA is based on the EU Ecolabel approach for detergents [5] and EUSES [6], which is based on the Technical Guidance Document (TGD) of the EU on Environmental Risk Assessment (ERA) of chemicals [7]. Apart from the Eco-label approach, all calculations are based on the same set of physico-chemical and toxicological effect data to enable a better comparison of the methodological differences. For the same reason, the system boundaries were kept the same in all cases, focusing on emissions into water at the disposal stage. Results and Discussion: Significant differences between the LCIA methods with respect to data needs and results were identified. Most LCIA methods for freshwater ecotoxicity and the ERA see the compact and regular powders as similar, followed by compact liquid. IMPACT 2002 (for freshwater) suggests the liquid is equally as good as the compact powder, while the regular powder comes out worse by a factor of 2. USES-LCA for marine water shows a very different picture seeing the compact liquid as the clear winner over the powders, with the regular powder the least favourable option. Even the LCIA methods which result in die same product ranking, e.g. EDIP97 chronic aquatic ecotoxicity and USES-LCA freshwater ecotoxicity, significantly differ in terms of most contributing substances. Whereas, according to IMPACT 2002 and USES-LCA marine water, results are entirely dominated by inorganic substances, the other LCIA methods and the ERA assign a key role to surfactants. Deviating results are mainly due to differences in the fate and exposure modelling and, to a lesser extent, to differences in the toxicological effect calculations. Only IMPACT 2002 calculates the effects based on a mean value approach, whereas all other LCIA methods and the ERA tend to prefer a PNEC-based approach. In a comparative context like LCA the OMNIITOX project has taken the decision for a combined mean and PNEC-based approach, as it better represents the ‘average' toxicity while still taking into account more sensitive species. However, the main reason for deviating results remains in the calculation of the residence time of emissions in the water compartments. Conclusion and Outlook: The situation that different LCIA methods result in different answers to the question concerning which detergent type is to be preferred regarding the impact category aquatic ecotoxicity is not satisfactory, unless explicit reasons for the differences are identifiable. This can hamper practical decision support, as LCA practitioners usually will not be in a position to choose the 'right' LCIA method for their specific case. This puts a challenge to the entire OMNIITOX project to develop a method, which finds common ground regarding fate, exposure and effect modelling to overcome the current situa-tion of diverging results and to reflect most realistic condition
Consumption-based material flow indicators - Comparing six ways of calculating the Austrian raw material consumption providing six results
Understanding the environmental implications of consumption and production depends on appropriate monitoring tools. Material flow accounting (MFA) is a method to monitor natural resource use by countries and has been widely used in research and policy. However, the increasing globalization requires the consideration of "embodied" material use of traded products. The indicator raw material consumption (RMC) represents the material use - no matter where in the world it occurs - associated with domestic final demand. It provides a consumption-based perspective complementary to the MFA indicators that have a territorial focus. Several studies on RMC have been presented recently but with diverging results; hence, a better understanding of the underlying differences is needed. This article presents a comparison of Austrian RMC for the year 2007 calculated by six different approaches (3 multi-regional input-output (MRIO) and 3 hybrid life-cycle analysis-IO approaches). Five approaches result in an RMC higher than the domestic material consumption (DMC). One hybrid LCA-IO approach calculates RMC to be lower than DMC. For specific material categories, results diverge by 50% or more. Due to the policy relevance of the RMC and DMC indicators it is paramount that their robustness is enhanced, which needs both data and method harmonization
Independent position correction on tumor and lymph nodes; consequences for bladder cancer irradiation with two combined IMRT plans
Abstract Background The application of lipiodol injections as markers around bladder tumors combined with the use of CBCT for image guidance enables daily on-line position correction based on the position of the bladder tumor. However, this might introduce the risk of underdosing the pelvic lymph nodes. In this study several correction strategies were compared. Methods For this study set-up errors and tumor displacements for ten complete treatments were generated; both were based on the data of 10 bladder cancer patients. Besides, two IMRT plans were made for 20 patients, one for the elective field and a boost plan for the tumor. For each patient 10 complete treatments were simulated. For each treatment the dose was calculated without position correction (option 1), correction on bony anatomy (option 2), on tumor only (option 3) and separately on bone for the elective field (option 4). For each method we analyzed the D99% for the tumor, bladder and lymph nodes and the V95% for the small intestines, rectum, healthy part of the bladder and femoral heads. Results CTV coverage was significantly lower with options 1 and 2. With option 3 the tumor coverage was not significantly different from the treatment plan. The ΔD99% (D99%, option n - D99%, treatment plan) for option 4 was small, but significant. For the lymph nodes the results from option 1 differed not significantly from the treatment plan. The median ΔD99% of the other options were small, but significant. ΔD99% for PTVbladder was small for options 1, 2 and 4, but decreased up to -8.5 Gy when option 3 was applied. Option 4 is the only method where the difference with the treatment plan never exceeds 2 Gy. The V95% for the rectum, femoral heads and small intestines was small in the treatment plan and this remained so after applying the correction options, indicating that no additional hot spots occurred. Conclusions Applying independent position correction on bone for the elective field and on tumor for the boost separately gives on average the best target coverage, without introducing additional hot spots in the healthy tissue.</p
The effect of on-line position correction on the dose distribution in focal radiotherapy for bladder cancer
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to determine the dosimetric effect of on-line position correction for bladder tumor irradiation and to find methods to predict and handle this effect.</p> <p>Methods</p> <p>For 25 patients with unifocal bladder cancer intensity modulated radiotherapy (IMRT) with 5 beams was planned. The requirement for each plan was that 99% of the target volume received 95% of the prescribed dose. Tumor displacements from -2.0 cm to 2.0 cm in each dimension were simulated, using 0.5 cm increments, resulting in 729 simulations per patient. We assumed that on-line correction for the tumor was applied perfectly. We determined the correlation between the change in D<sub>99% </sub>and the change in path length, which is defined here as the distance from the skin to the isocenter for each beam. In addition the margin needed to avoid underdosage was determined and the probability that an underdosage occurs in a real treatment was calculated.</p> <p>Results</p> <p>Adjustments for tumor displacement with perfect on-line position correction resulted in an altered dose distribution. The altered fraction dose to the target varied from 91.9% to 100.4% of the prescribed dose. The mean D<sub>99% </sub>(± SD) was 95.8% ± 1.0%. There was a modest linear correlation between the difference in D<sub>99% </sub>and the change in path length of the beams after correction (R<sup>2 </sup>= 0.590). The median probability that a systematic underdosage occurs in a real treatment was 0.23% (range: 0 - 24.5%). A margin of 2 mm reduced that probability to < 0.001% in all patients.</p> <p>Conclusion</p> <p>On-line position correction does result in an altered target coverage, due to changes in average path length after position correction. An extra margin can be added to prevent underdosage.</p
Regulation of Pacing Strategy during Athletic Competition
Background: Athletic competition has been a source of interest to the scientific community for many years, as a surrogate of the limits of human ambulatory ability. One of the remarkable things about athletic competition is the observation that some athletes suddenly reduce their pace in the mid-portion of the race and drop back from their competitors. Alternatively, other athletes will perform great accelerations in mid-race (surges) or during the closing stages of the race (the endspurt). This observation fits well with recent evidence that muscular power output is regulated in an anticipatory way, designed to prevent unreasonably large homeostatic disturbances.
Principal Findings: Here we demonstrate that a simple index, the product of the momentary Rating of Perceived Exertion (RPE) and the fraction of race distance remaining, the Hazard Score, defines the likelihood that athletes will change their velocity during simulated competitions; and may effectively represent the language used to allow anticipatory regulation of muscle power output.
Conclusions: These data support the concept that the muscular power output during high intensity exercise performance is actively regulated in an anticipatory manner that accounts for both the momentary sensations the athlete is experiencing as well as the relative amount of a competition to be completed
Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis
Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy
Analyzing the effects of the choice of model in the context of marginal changes in final demand
Abstract Literature on the choice of model for deriving an input–output table (IOT) from a pair of supply–use tables (SUTs) has focused on the consequences for the IOT and the Leontief inverse. Analyzing the technology and fixed sales structure transformation models and their applications involving impact analysis and multipliers of factor inputs or environmental extensions, we prove that the product technology and fixed sales structure assumption models are effectively identical and so are the industry technology and fixed product sales structure models. A dimensional analysis shows that the product technology and fixed sales structure assumption models maintain consistency in accounting units, while the industry technology and fixed product sales structure models do not. Comparison with selected topics in environmental life cycle assessment (LCA) shows that the commodity technology and fixed industry sales structure models yield results that are compatible with mainstream LCA. We conclude these models are “correct” in the context of impact analysis and multipliers of the satellite of a SUT/IOT system, despite the fact that they may result in “negatives.” We propose a new quantity, the intensity matrix, and highlight its benefits in terms of the consistency of dimension and ease of interpretation. We illustrate our findings with examples of a SUT/IOT for several EU countries. We finally discuss briefly the possibility of calculating contributions to multipliers, where it is shown that models that are equivalent in terms of observable results (multipliers) disagree on unobservable quantities (contributions to multipliers)
- …