41 research outputs found

    CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials

    Get PDF
    Background Several treatment approaches in cystic fibrosis (CF) aim to correct CF transmembrane conductance regulator (CFTR) function; the efficacy of each approach is dependent on the mutation(s) present. A need remains for more effective treatments to correct functional deficits caused by the F508del mutation. Methods Two placebo-controlled, phase 2a studies evaluated GLPG2222, given orally once daily for 29 days, in subjects homozygous for F508del (FLAMINGO) or heterozygous for F508del and a gating mutation, receiving ivacaftor (ALBATROSS). The primary objective of both studies was to assess safety and tolerability. Secondary objectives included assessment of pharmacokinetics, and of the effect of GLPG2222 on sweat chloride concentrations, pulmonary function and respiratory symptoms. Results Fifty-nine and 37 subjects were enrolled into FLAMINGO and ALBATROSS, respectively. Treatment-related treatment-emergent adverse events (TEAEs) were reported by 29.2% (14/48) of subjects in FLAMINGO and 40.0% (12/30) in ALBATROSS; most were mild to moderate in severity and comprised primarily respiratory, gastrointestinal, and infection events. There were no deaths or discontinuations due to TEAEs. Dose-dependent decreases in sweat chloride concentrations were seen in GLPG2222-treated subjects (maximum decrease in FLAMINGO: –17.6 mmol/L [GLPG2222 200 mg], p < 0.0001; ALBATROSS: –7.4 mmol/L [GLPG2222 300 mg], p < 0.05). No significant effects on pulmonary function or respiratory symptoms were reported. Plasma GLPG2222 concentrations in CF subjects were consistent with previous studies in healthy volunteers and CF subjects. Conclusions GLPG2222 was well tolerated. Sweat chloride reductions support on-target enhancement of CFTR activity in subjects with F508del mutation(s). Significant improvements in clinical endpoints were not demonstrated. Observed safety results support further evaluation of GLPG2222, including in combination with other CFTR modulators. Funding Galapagos NV. Clinical trial registration numbers FLAMINGO, NCT03119649; ALBATROSS, NCT0304552

    Rapidly growing gastric metastasis of Merkel cell carcinoma, an unusual cause of melena

    No full text
    Merkel cell carcinoma (MCC) is an uncommon, highly aggressive neuroendocrine skin carcinoma that has a tendency for local recurrence and metastatic disease. We report a rare case of recurrent melena in a 77-year-old Caucasian male. Three years earlier, the patient had undergone a radical resection of a para-umbilical MCC. A repeat esophagogastroduodenoscopy (EGD) proved necessary to identify rapidly proliferating gastric metastasis of MCC as the cause of bleeding

    Inulin solid dispersion technology to improve the absorption of the BCS Class IV drug TMC240

    No full text
    TMC240 is a very poorly soluble and poorly permeating HIV protease inhibitor. In order to enhance its oral bioavailability, a fast dissolving inulin-based solid dispersion tablet was developed. During the dissolution test in water (0.5% or 1.0% SLS), this tablet released at least 80% of TMC240 within 30min, while a tablet with the same composition, but manufactured as physical mixture, released only 6% after 2h. In a subsequent single-dose study in dogs (200mg of TMC240), plasma concentrations of TMC240 remained below the lower limit of quantification (<1.00ng/mL) in all animals (n=3 per tested formulation), except in one dog receiving the inulin solid dispersion tablet (C(max)=1.8ng/mL, AUC(0-7 h)=3.0ngh/mL). In the latter treatment group, ritonavir co-administration (10mg/kg b.i.d.) increased TMC240 exposure more than 30-fold (mean AUC(0-7 h)=108ngh/mL; F(rel)=3588%). Exposure was also 16-fold higher than after TMC240 administration as PEG400 suspension in the presence of ritonavir (AUC(0-7 h)=6.7ngh/mL). The current data demonstrate that a solid dispersion of TMC240 in an inulin matrix allows considerable improvement in the release of poorly water-soluble TMC240, both in vitro in the presence of a surfactant and in vivo upon oral administration

    Co-administration of darunavir and a new pharmacokinetic booster: formulation strategies and evaluation in dogs

    No full text
    Various formulations for combination of the anti-HIV protease inhibitor darunavir (DRV) and TMC41629, a pharmacokinetic booster for DRV, were studied. TMC41629 (a BCS-IV compound) was formulated in capsules, as polyethylene glycol 400 (PEG400) solution, binary or ternary self-microemulsifying drug delivery system (SMEDDS), inclusion complex with hydroxypropyl-beta-cyclodextrin (HPbetaCD) or polyvinylpyrrolidone-co-vinylacetate 64 (PVP/VA64) extrudate. In addition, tablets were prepared using unmilled or micronized powder and a disintegrant. On co-administration with DRV tablets in dogs, DRV plasma concentration levels were boosted by TMC41629, the PVP/VA64 extrudate achieving the highest DRV levels (2-fold increase). Yet, with extrudate prepared with both compounds, no boosting effect was observed, likely due to transition of DRV from crystalline solvate to amorphous state. Therefore, a co-formulation, combining DRV as crystalline solvate with amorphous TMC41629, was developed. DRV/kappa-carrageenan 80/20% (w/w) beads coated with TMC41629 released at least 80% within 1h in 0.01M HCl with 0.5% sodium lauryl sulphate, TMC41629 dissolving faster than DRV. In dogs, the DRV exposure increased 2.7-fold with the TMC41629-coated beads relative to DRV alone, yet remained lower, but less variable, than following co-administration as separate formulations. Coating of TMC41629 on DRV/kappa-carrageenan beads is a suitable technique for co-formulation, whereby TMC41629 can function as a booster of DRV.status: publishe

    In Vitro Activity and Preclinical Profile of TMC435350, a Potent Hepatitis C Virus Protease Inhibitor▿ †

    No full text
    The hepatitis C virus (HCV) NS3/4A serine protease has been explored as a target for the inhibition of viral replication in preclinical models and in HCV-infected patients. TMC435350 is a highly specific and potent inhibitor of NS3/4A protease selected from a series of novel macrocyclic inhibitors. In biochemical assays using NS3/4A proteases of genotypes 1a and 1b, inhibition constants of 0.5 and 0.4 nM, respectively, were determined. TMC435350 inhibited HCV replication in a cellular assay (subgenomic 1b replicon) with a half-maximal effective concentration (EC50) of 8 nM and a selectivity index of 5,875. The compound was synergistic with alpha interferon and an NS5B inhibitor in the replicon model and additive with ribavirin. In rats, TMC435350 was extensively distributed to the liver and intestinal tract (tissue/plasma area under the concentration-time curve ratios of >35), and the absolute bioavailability was 44% after a single oral administration. Compound concentrations detected in both plasma and liver at 8 h postdosing were above the EC99 value measured in the replicon. In conclusion, given the selective and potent in vitro anti-HCV activity, the potential for combination with other anti-HCV agents, and the favorable pharmacokinetic profile, TMC435350 has been selected for clinical development

    Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor

    No full text
    The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2\u27 substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high enthalpy driven affinity of TMC114 for HIV-1 protease. In vitro selection of mutants resistant to TMC114 starting from wild-type virus proved to be extremely difficult; this was not the case for other close analogues. Therefore, the extra H-bond to the backbone in the P2 pocket cannot be the only explanation for the interesting antiviral profile of TMC114. Absorption studies in animals indicated that TMC114 has pharmacokinetic properties comparable to currently approved HIV-1 protease inhibitors
    corecore