1,135 research outputs found

    MR/GR Signaling in the Brain during the Stress Response

    Get PDF
    This contribution is about mineralocorticoid receptors (MRs) in their capacity as mediators of glucocorticoid action in the brain. This paradox has evolved because MRs are promiscuous and bind with high-affinity cortisol and corticosterone as well as aldosterone, deoxycorticosterone, and progesterone. The MRs “see,” however, predominantly glucocorticoids, because of their 100–1000-fold excess over aldosterone; bioavailability is further enhanced because of local regeneration of glucocorticoids by 11βOH-steroid dehydrogenase (HSD-1). In contrast to these glucocorticoid-preferring MR, the evolutionary later appearance of aldosterone-selective MR in epithelial cells depends on co-localization with the oxidase 11β-hydroxysteroid-dehydrogenase type 2 (HSD-2) in a few hundred neurons in the nucleus tractus solitarii (NTS), which innervate frontal brain regions to regulate cognitive, emotional, and motivational aspects of salt appetite. The glucocorticoid-MRs and classical glucocorticoid receptors (GRs) mediate in a complementary manner the glucocorticoid coordination of circadian events and mediate the regulation of stress coping and adaptation. If an individual is exposed to a threat, MRs are crucial for the selection of a particular coping style, which is via GR activation subsequently stored in the memory for future use. Our contribution is concluded with the notion that an imbalance in MR- and GR-mediated actions increases susceptibility to stress-related disorders

    Onderscheidbaarheid van alfanumerieke symbolen

    Get PDF

    Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism

    Get PDF
    In the forced swim test (FST) rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving) behavioural style. In the past decade however the switch from active to passive "coping" was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000) stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent's behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation

    Primary Cauda Equina T-Cell Lymphoblastic Lymphoma

    Get PDF
    BACKGROUND: T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive form of non-Hodgkin lymphoma. This report describes, to our knowledge, the first adult case of a primary cauda equina T-LBL. Treatment consists of multiagent chemotherapy, and surgical removal of T-LBL does not improve outcome. We discuss the workup of patients with an intradural spinal mass, together with a review of the literature on primary spinal lymphoma of the cauda equina. CASE DESCRIPTION: A 54-year-old woman with Crohn's disease, for which she was taking immunosuppressive medication, presented with progressive back pain radiating to both legs and deteriorating neurologic deficits caused by an intradural, contrast-enhancing lesion in the L1-5 region. During acute surgery, the tumor was partially resected. Immunohistochemical phenotyping revealed a T-LBL. No other lymphoma localizations were found after subsequent staging. Despite extensive treatment, the patient died of disseminated disease throughout the central nervous system, 6 weeks after the diagnosis. CONCLUSIONS: Pain and progressive neurologic complaints can be symptoms of a (malignant) intradural spinal tumor. Intradural lymphoma must be considered as a differential diagnosis by clinicians because it can mimic neoplasms that often require urgent surgery. The histopathologic diagnosis should preferably be obtained by way of cerebrospinal fluid analysis or tumor biopsy because tumor resection has no beneficial effect on the oncologic outcome

    The role of corticosterone in human hypothalamic– pituitary–adrenal axis feedback

    Full text link
    Objective  In humans, the glucocorticoid corticosterone circulates in blood at 10–20-fold lower levels than cortisol, but is found in higher relative amounts in postmortem brain samples. Access of cortisol and corticosterone to the central nervous system may not be equal. Additionally, the relative affinities for the glucocorticoid and mineralocorticoid receptors differ, such that corticosterone may play a significant role in human brain function. Design  We measured cortisol and corticosterone levels in paired plasma and cerebrospinal fluid (CSF) samples. To test the relative potency of cortisol vs. corticosterone on hypothalamic–pituitary–adrenal (HPA) feedback, subjects underwent a three-phase, single-blind, randomized study assessing the postmetyrapone ACTH response over 3 h to an intravenous bolus of vehicle, cortisol or corticosterone (0·15 mg/kg and 0·04 mg/kg). Participants  Outpatients undergoing diagnostic lumbar puncture who were subsequently deemed to be free of disease. Feedback was tested in healthy male volunteers. Measurements  Plasma and CSF corticosterone to cortisol ratio was calculated and the ACTH response over time after the bolus glucocorticoid measured. Results  Plasma corticosterone : cortisol was 0·069 ± 0·007; CSF corticosterone : cortisol was 0·387 ± 0·050 ( P <  0·001). Cortisol and corticosterone (0·15 mg/kg) suppressed ACTH vs. vehicle ( P =  0·002); there was no difference between corticosterone and cortisol. The 0·04 mg/kg dose had no effect on ACTH despite supraphysiological plasma corticosterone levels. Conclusions  Corticosterone contributes almost 40% of total active glucocorticoids (cortisol and corticosterone) in the CSF. Significant effects on HPA axis suppression were only seen with supraphysiological levels of corticosterone, suggesting that corticosterone is not important in this model of nonstress-induced ACTH hypersecretion, in which the effect of cortisol predominates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72329/1/j.1365-2265.2006.02540.x.pd

    Susceptibility or resilience? Prenatal stress predisposes male rats to social subordination, but facilitates adaptation to subordinate status

    Get PDF
    Mood disorders such as major depressive disorder (MDD) affect a significant proportion of the population. Although progress has been made in the development of therapeutics, a large number of individuals do not attain full remission of symptoms and adverse side effects affect treatment compliance for some. In order to develop new therapies, there is a push for new models that better reflect the multiple risk factors that likely contribute to the development of depressive illness. We hypothesized that early life stress would exacerbate the depressive-like phenotype that we have previously observed in socially subordinate (SUB) adult male rats in the visible burrow system (VBS), a semi-natural, ethologically relevant environment in which males in a colony form a dominance hierarchy. Dams were exposed to chronic variable stress (CVS) during the last week of gestation, resulting in a robust and non-habituating glucocorticoid response that did not alter maternal food intake, body weight or litter size and weight. As adults, one prenatal CVS (PCVS) and one non-stressed (NS) male were housed in the VBS with adult females. Although there were no overt differences between PCVS and NS male offspring prior to VBS housing, a greater percentage of PCVS males became SUB. However, the depressive-like phenotype of SUB males was not exacerbated in PCVS males; rather, they appeared to better cope with SUB status than NS SUB males. They had lower basal plasma corticosterone than NS SUB males at the end of VBS housing. In situ hybridization for CRH in the PVN and CeA did not reveal any prenatal treatment or status effects, while NPY expression was higher within the MeA of dominant and subordinate males exposed to the VBS in comparison with controls, but with no effect of prenatal treatment. These data suggest that prenatal chronic variable stress may confer resilience to offspring when exposed to social stress in adulthood

    Localization of Mineralocorticoid Receptors at Mammalian Synapses

    Get PDF
    In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids

    A common and functional mineralocorticoid receptor haplotype enhances optimism and protects against depression in females

    Get PDF
    Mineralocorticoid (MR) and glucocorticoid receptors (GR) are abundantly expressed in the limbic brain and mediate cortisol effects on the stress-response and behavioral adaptation. Dysregulation of the stress response impairs adaptation and is a risk factor for depression, which is twice as abundant in women than in men. Because of the importance of MR for appraisal processes underlying the initial phase of the stress response we investigated whether specific MR haplotypes were associated with personality traits that predict the risk of depression. We discovered a common gene variant (haplotype 2, frequency ∼0.38) resulting in enhanced MR activity. Haplotype 2 was associated with heightened dispositional optimism in study 1 and with less hopelessness and rumination in study 2. Using data from a large genome-wide association study we then established that haplotype 2 was associated with a lower risk of depression. Interestingly, all effects were restricted to women. We propose that common functional MR haplotypes are important determinants of inter-individual variability in resilience to depression in women by differentially mediating cortisol effects on the stress system
    corecore