23,241 research outputs found

    Microscopic Conductivity of Lattice Fermions at Equilibrium - Part I: Non-Interacting Particles

    Full text link
    We consider free lattice fermions subjected to a static bounded potential and a time- and space-dependent electric field. For any bounded convex region R⊂Rd\mathcal{R}\subset \mathbb{R}^{d} (d≥1d\geq 1) of space, electric fields E\mathcal{E} within R\mathcal{R} drive currents. At leading order, uniformly with respect to the volume ∣R∣\left| \mathcal{R}\right| of R\mathcal{R} and the particular choice of the static potential, the dependency on E\mathcal{E} of the current is linear and described by a conductivity distribution. Because of the positivity of the heat production, the real part of its Fourier transform is a positive measure, named here (microscopic) conductivity measure of R\mathcal{R}, in accordance with Ohm's law in Fourier space. This finite measure is the Fourier transform of a time-correlation function of current fluctuations, i.e., the conductivity distribution satisfies Green-Kubo relations. We additionally show that this measure can also be seen as the boundary value of the Laplace-Fourier transform of a so-called quantum current viscosity. The real and imaginary parts of conductivity distributions satisfy Kramers-Kronig relations. At leading order, uniformly with respect to parameters, the heat production is the classical work performed by electric fields on the system in presence of currents. The conductivity measure is uniformly bounded with respect to parameters of the system and it is never the trivial measure 0 dν0\,\mathrm{d}\nu . Therefore, electric fields generally produce heat in such systems. In fact, the conductivity measure defines a quadratic form in the space of Schwartz functions, the Legendre-Fenchel transform of which describes the resistivity of the system. This leads to Joule's law, i.e., the heat produced by currents is proportional to the resistivity and the square of currents

    Evaluation of expected solar flare neutrino events in the IceCube observatory

    Full text link
    Since the end of the eighties and in response to a reported increase in the total neutrino flux in the Homestake experiment in coincidence with a solar flare, solar neutrino detectors have searched for solar flare signals. Neutrinos from the decay of mesons, which are themselves produced in collisions of accelerated protons with the solar atmosphere, would provide a novel window on the underlying physics of the acceleration process. For our studies we focus on the IceCube Neutrino Observatory, a cubic kilometer neutrino detector located at the geographical South Pole. Due to its Supernova data acquisition system and its DeepCore component, dedicated to low energy neutrinos, IceCube may be sensitive to solar flare neutrinos and thus permit either a measurement of the signal or the establishment of more stringent upper limits on the solar flare neutrino flux. We present an approach for a time profile analysis based on a stacking method and an evaluation of a possible solar flare signal in IceCube using the Geant4 toolkit.Comment: Paper submitted to the 34th International Cosmic Ray Conference, The Hague 201

    Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks

    Get PDF
    Spin wave spectra of perpendicularly magnetized disks with trilayers consisting of a 100 nm permalloy (Py) layer sandwiched by two Cu layers of 30 nm, are measured individually with a Magnetic Resonance Force Microscope (MRFM). It is demonstrated by 3D micromagnetic simulations that in disks having sub-micron size diameters, the lowest energy spin wave mode of the saturated state is not spatially uniform but rather is localized at the center of the Py/Cu interface in the region of a minimum demagnetizing field

    Magnetic resonance spectroscopy of perpendicularly magnetized permalloy multilayer disks

    Get PDF
    Using a Magnetic Resonance Force Microscope, we compare the ferromagnetic resonance spectra of individual micron-size disks with identical diameter, 1 mmm, but different layer structures. For a disk composed of a single 43.3 nm thick permalloy (Py) layer, the lowest energy mode in the perpendicular configuration is the uniform precession. The higher energy modes are standing spin-waves confined along the diameter of the disk. For a Cu(30)/Py(100)/Cu(30) nm multilayer structure, it has been interpreted that the lowest energy mode becomes a precession localized at the Cu/Py interfaces. When the multilayer is changed to Py(100)/Cu(10)/Py(10) nm, this localized mode of the thick layer is coupled to the precession of the thin layer

    A Frequency-Controlled Magnetic Vortex Memory

    Get PDF
    Using the ultra low damping NiMnSb half-Heusler alloy patterned into vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile memory controlled by the frequency. A perpendicular bias magnetic field is used to split the frequency of the vortex core gyrotropic rotation into two distinct frequencies, depending on the sign of the vortex core polarity p=±1p=\pm1 inside the dot. A magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allow for local and deterministic addressing of binary information (core polarity)

    Optimizing magneto-dipolar interactions for synchronizing vortex based spin-torque nano-oscillators

    Get PDF
    We report on a theoretical study about the magneto-dipolar coupling and synchronization between two vortex-based spin-torque nano-oscillators. In this work we study the dependence of the coupling efficiency on the relative magnetization parameters of the vortices in the system. For that purpose, we combine micromagnetic simulations, Thiele equation approach, and analytical macro-dipole approximation model to identify the optimized configuration for achieving phase-locking between neighboring oscillators. Notably, we compare vortices configurations with parallel (P) polarities and with opposite (AP) polarities. We demonstrate that the AP core configuration exhibits a coupling strength about three times larger than in the P core configuration.Comment: 8 pages, 11 figure

    Circulating markers of arterial thrombosis and late-stage age-related macular degeneration: a case-control study.

    No full text
    PURPOSE: The aim of this study was to examine the relation of late-stage age-related macular degeneration (AMD) with markers of systemic atherothrombosis. METHODS: A hospital-based case-control study of AMD was undertaken in London, UK. Cases of AMD (n=81) and controls (n=77) were group matched for age and sex. Standard protocols were used for colour fundus photography and to classify AMD; physical examination included height, weight, history of or treatment for vascular-related diseases and smoking status. Blood samples were taken for measurement of fibrinogen, factor VIIc (FVIIc), factor VIIIc, prothrombin fragment F1.2 (F1.2), tissue plasminogen activator, and von Willebrand factor. Odds ratios from logistic regression analyses of each atherothrombotic marker with AMD were adjusted for age, sex, and established cardiovascular disease risk factors, including smoking, blood pressure, body mass index, and total cholesterol. RESULTS: After adjustment FVIIc and possibly F1.2 were inversely associated with the risk of AMD; per 1 standard deviation increase in these markers the odds ratio were, respectively, 0.62 (95% confidence interval 0.40, 0.95) and 0.71 (0.46, 1.09). None of the other atherothrombotic risk factors appeared to be related to AMD status. There was weak evidence that aspirin is associated with a lower risk of AMD. CONCLUSIONS: This study does not provide strong evidence of associations between AMD and systematic markers of arterial thrombosis, but the potential effects of FVIIc, and F1.2 are worthy of further investigation

    Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque

    Full text link
    We investigate the dynamics of two coupled vortices driven by spin transfer. We are able to independently control with current and perpendicular field, and to detect, the respective chiralities and polarities of the two vortices. For current densities above J=5.7∗107A/cm2J=5.7*10^7 A/cm^2, a highly coherent signal (linewidth down to 46 kHz) can be observed, with a strong dependence on the relative polarities of the vortices. It demonstrates the interest of using coupled dynamics in order to increase the coherence of the microwave signal. Emissions exhibit a linear frequency evolution with perpendicular field, with coherence conserved even at zero magnetic field
    • …
    corecore