1,990 research outputs found

    Muon localization site in U(Pt,Pd)3

    Full text link
    The angular and temperature (10-250 K) variation of the Knight shift of single-crystalline U(Pt0.95Pd0.05)3 has been measured in transverse field (B=0.6 T) mSR experiments. By analysing the temperature variation of the Knight shift with a modified Curie-Weiss expression the muon localization site in this hexagonal material is determined at (0,0,0).Comment: 12 pages (including 4 figures); postscript file; Proc. 8th Int. Conf. on Muon Spin Rotation, Relaxation and Resonance (Aug.30-Sept.3, Les Diablerets); 2nd version with minor correction

    Exploring the use of a web-based virtual patient to support learning through reflection

    Get PDF
    This thesis explores the support of learning through reflection, in the context of medical students and practitioners, working through a series of simulated consultations involving the diagnosis and management of chronic illness. A model of the medical consultative process was defined, on which a web-based patient simulation was developed. This simulation can be accessed over the Internet using commonly available web-browsers. It enables users to interact with a virtual patient by taking a history, examining the patient, requesting and reviewing investigations, and choosing appropriate management strategies. The virtual patient can be reviewed over a number of consultations, and the patient outcome is dependant on the management strategy selected by the user. A second model was also developed, that adds a layer of reflection over the consultative process. While interacting with the virtual patient users are asked to formulate and test their hypotheses. Simple tools are included to encourage users to record their observations and thoughts for further learning, as well as providing links to web-based library resources. At the end of each consultation, users are asked to review their actions and indicate whether they think their actions were critical, relevant, or not relevant to the diagnosis and management of the patient in light of their current knowledge. Users also have the opportunity to compare their activity to their peers or an expert in the case under study. Three formal cycles of evaluation were undertaken during the design and development of the software. A number of clinicians were involved in the initial design to ensure there was an appropriate structure that matched clinical practice. Formative evaluation was conducted to review the usability of the application, and based on user feedback a number of changes were made to the user interface and structure of the application. A third, end user, evaluation was undertaken using a single case concerning the diagnosis and management of hypertriglyceridaemia in the context of Type 1B Glycogen Storage Disease. This evaluation involved ten medical students, five general practitioners and two specialists. The evaluation involved observation using a simplified think-aloud, as well as administration of a questionnaire. Users were engaged by the simulation, and were able to use the application with only a short period of training. Usability issues still exist with respect to the processing of natural language input, especially when asking questions of the virtual patient. Until such time that natural language recognition is able to provide satisfactory performance, alternative, list-based, methods of interaction will be required. Evaluation involving medical students, general practitioners, and specialist medical practitioners demonstrated that reflection can be supported and encouraged by providing appropriate tools, as well as by judiciously interrupting the consultative process and providing time for reflection to take place. Reflection could have been further enhanced if users had been educated on reflection as a learning modality prior to using SIMPRAC. Further work is also required to improve the simulation environment, improve the interfaces for supporting reflection, and further define the benefits of using this approach for medical education and professional development with respect to learning outcomes and behavioural change

    Trajectory Deflection of Spinning Magnetic Microparticles, the Magnus Effect at the Microscale

    Get PDF
    The deflection due to the Magnus force of magnetic particles with a diameter of 80 micrometer dropping through fluids and rotating in a magnetic field was measured. With Reynolds number for this experiment around 1, we found trajectory deflections of the order of 1 degree, in agreement within measurement error with theory. This method holds promise for the sorting and analysis of the distribution in magnetic moment and particle diameter of suspensions of microparticles, such as applied in catalysis, or objects loaded with magnetic particles.Comment: 12 pages, 3 figures. Appendix with 6 figure

    Paired and altruistic kidney donation in the UK: algorithms and experimentation

    Get PDF
    We study the computational problem of identifying optimal sets of kidney exchanges in the UK. We show how to expand an integer programming-based formulation [1, 19] in order to model the criteria that constitute the UK definition of optimality. The software arising from this work has been used by the National Health Service Blood and Transplant to find optimal sets of kidney exchanges for their National Living Donor Kidney Sharing Schemes since July 2008.We report on the characteristics of the solutions that have been obtained in matching runs of the scheme since this time. We then present empirical results arising from the real datasets that stem from these matching runs, with the aim of establishing the extent to which the particular optimality criteria that are present in the UK influence the structure of the solutions that are ultimately computed. A key observation is that allowing 4-way exchanges would be likely to lead to a significant number of additional transplants

    Fluctuating hydrodynamic modelling of fluids at the nanoscale

    Get PDF
    A good representation of mesoscopic fluids is required to combine with molecular simulations at larger length and time scales (De Fabritiis {\it et. al}, Phys. Rev. Lett. 97, 134501 (2006)). However, accurate computational models of the hydrodynamics of nanoscale molecular assemblies are lacking, at least in part because of the stochastic character of the underlying fluctuating hydrodynamic equations. Here we derive a finite volume discretization of the compressible isothermal fluctuating hydrodynamic equations over a regular grid in the Eulerian reference system. We apply it to fluids such as argon at arbitrary densities and water under ambient conditions. To that end, molecular dynamics simulations are used to derive the required fluid properties. The equilibrium state of the model is shown to be thermodynamically consistent and correctly reproduces linear hydrodynamics including relaxation of sound and shear modes. We also consider non-equilibrium states involving diffusion and convection in cavities with no-slip boundary conditions

    General Non-equilibrium Theory of Colloid Dynamics

    Full text link
    A non-equilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time evolution equations of its mean value n(r,t) and of the covariance {\sigma}(r,r';t) \equiv of its fluctuations {\delta}n(r, t) = n(r, t) - n(r, t). These two coarse-grained equations involve a local mobility function b(r, t) which, in its turn, is written in terms of the memory function of the two-time correlation function C(r, r' ; t, t') \equiv <{\delta}n(r, t){\delta}n(r',t')>. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n^0(r) and {\sigma}^0(r,r') towards its equilibrium state characterized by the equilibrium local concentration profile n^(eq)(r) and equilibrium covariance {\sigma}^(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure

    Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of UPt3UPt_3

    Get PDF
    We discuss possible magnetic structures in UPt3_3 based on our analysis of elastic neutron-scattering experiments in high magnetic fields at temperatures T<TNT<T_N. The existing experimental data can be explained by a single-{\bf q} antiferromagnetic structure with three independent domains. For modest in-plane spin-orbit interactions, the Zeeman coupling between the antiferromagnetic order parameter and the magnetic field induces a rotation of the magnetic moments, but not an adjustment of the propagation vector of the magnetic order. A triple-{\bf q} magnetic structure is also consistent with neutron experiments, but in general leads to a non-uniform magnetization in the crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex

    The incidence, root-causes, and outcomes of adverse events in surgical units: implication for potential prevention strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We need to know the scale and underlying causes of surgical adverse events (AEs) in order to improve the safety of care in surgical units. However, there is little recent data. Previous record review studies that reported on surgical AEs in detail are now more than ten years old. Since then surgical technology and quality assurance have changed rapidly. The objective of this study was to provide more recent data on the incidence, consequences, preventability, causes and potential strategies to prevent AEs among hospitalized patients in surgical units.</p> <p>Methods</p> <p>A structured record review study of 7,926 patient records was carried out by trained nurses and medical specialist reviewers in 21 Dutch hospitals. The aim was to determine the presence of AEs during hospitalizations in 2004 and to consider how far they could be prevented. Of all AEs, the consequences, responsible medical specialty, causes and potential prevention strategies were identified. Surgical AEs were defined as AEs attributable to surgical treatment and care processes and were selected for analysis in detail.</p> <p>Results</p> <p>Surgical AEs occurred in 3.6% of hospital admissions and represented 65% of all AEs. Forty-one percent of the surgical AEs was considered to be preventable. The consequences of surgical AEs were more severe than for other types of AEs, resulting in more permanent disability, extra treatment, prolonged hospital stay, unplanned readmissions and extra outpatient visits. Almost 40% of the surgical AEs were infections, 23% bleeding, and 22% injury by mechanical, physical or chemical cause. Human factors were involved in the causation of 65% of surgical AEs and were considered to be preventable through quality assurance and training.</p> <p>Conclusions</p> <p>Surgical AEs occur more often than other types of AEs, are more often preventable and their consequences are more severe. Therefore, surgical AEs have a major impact on the burden of AEs during hospitalizations. These findings concur with the results from previous studies. However, evidence-based solutions to reduce surgical AEs are increasingly available. Interventions directed at human causes are recommended to improve the safety of surgical care. Examples are team training and the surgical safety checklist. In addition, specific strategies are needed to improve appropriate use of antibiotic prophylaxis and sustainable implementation of hygiene guidelines to reduce infections.</p
    corecore