185 research outputs found

    Outcome of atypical haemolytic uraemic syndrome relapse after eculizumab withdrawal

    Get PDF
    Background. The introduction of eculizumab has significantly improved the outcome of patients with atypical haemolytic uraemic syndrome (aHUS). Because of the risk of relapse after discontinuation, eculizumab was proposed as life-long therapy. However, data on the outcome of relapse are limited. In the Netherlands, patients with aHUS are treated with a restrictive eculizumab regime and are included in a national observational study (CUREiHUS, Dutch Trial Register NTR5988/NL5833). Methods. For this interim safety analysis, we evaluated the outcome of all adult patients with a suspected relapse, defined as the need to intensify eculizumab after tapering or withdrawal of therapy. Results. We describe 11 patients who received renewed eculizumab therapy because of suspected relapse. In three patients with aHUS in native kidneys, estimated glomerular filtration rate (eGFR) returned to baseline value and remained stable without overt proteinuria after follow-up. Six out of eight transplanted patients responded to eculizumab therapy with improvement in eGFR. After a median follow-up of 24.6 months, a reduction of eGFR >= 25% was observed in three of these transplanted patients, which was attributed to the aHUS relapse in only one patient. Conclusions. This interim analysis suggests that re-treatment with eculizumab after relapse is safe and feasible. We will continue to use our restrictive treatment strategy

    Eculizumab as rescue therapy for atypical hemolytic uremic syndrome with normal platelet count

    Get PDF
    Item does not contain fulltextBACKGROUND: Atypical hemolytic uremic syndrome (aHUS) in childhood is a rare disease with frequent progression to end-stage renal disease and a high recurrence after kidney transplantation. Eculizumab, a humanized monoclonal antibody that binds to complement protein C5, may be beneficial in the treatment of aHUS. CASE-DIAGNOSIS/TREATMENT: A 6-year-old girl developed aHUS with only slightly elevated C3d (4.4%), no mutations in complement factors, and no antibodies against factor H. Plasma exchange treatment was successful initially, until aHUS recurred. After reinitiating plasma exchange, normalization of the platelet count and improvement of hemolysis occurred, but renal function worsened. Renal function then improved dramatically promptly after the switch to eculizumab. CONCLUSIONS: This case demonstrates that platelet count is not always a reliable marker for improvement of aHUS and that eculizumab can prevent dialysis in plasma-resistant aHUS patients.1 juli 201

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Serological and genetic complement alterations in infection-induced and complement-mediated hemolytic uremic syndrome

    Get PDF
    The role of complement in the atypical form of hemolytic uremic syndrome (aHUS) has been investigated extensively in recent years. As the HUS-associated bacteria Shiga-toxin-producing Escherichia coli (STEC) can evade the complement system, we hypothesized that complement dysregulation is also important in infection-induced HUS. Serological profiles (C3, FH, FI, AP activity, C3d, C3bBbP, C3b/c, TCC, alpha FH) and genetic profiles (CFH, CFI, CD46, CFB, C3) of the alternative complement pathway were prospectively determined in the acute and convalescent phase of disease in children newly diagnosed with STEC-HUS or aHUS. Serological profiles were compared with those of 90 age-matched controls. Thirty-seven patients were studied (26 STEC-HUS, 11 aHUS). In 39 % of them, including 28 % of STEC-HUS patients, we identified a genetic and/or acquired complement abnormality. In all patient groups, the levels of investigated alternative pathway (AP) activation markers were elevated in the acute phase and normalized in remission. The levels were significantly higher in aHUS than in STEC-HUS patients. In both infection-induced HUS and aHUS patients, complement is activated in the acute phase of the disease but not during remission. The C3d/C3 ratio displayed the best discrepancy between acute and convalescent phase and between STEC-HUS and aHUS and might therefore be used as a biomarker in disease diagnosis and monitoring. The presence of aberrations in the alternative complement pathway in STEC-HUS patients was remarkable, as well

    Different Aspects of Classical Pathway Overactivation in Patients With C3 Glomerulopathy and Immune Complex-Mediated Membranoproliferative Glomerulonephritis

    Get PDF
    The rare and heterogeneous kidney disorder C3 glomerulopathy (C3G) is characterized by dysregulation of the alternative pathway (AP) of the complement system. C3G is often associated with autoantibodies stabilizing the AP C3 convertase named C3 nephritic factors (C3NeF). The role of classical pathway (CP) convertase stabilization in C3G and related diseases such as immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) remains largely unknown. Here, we investigated the CP convertase activity in patients with C3G and IC-MPGN. Using a refined two-step hemolytic assay, we measured the stability of CP convertases directly in the serum of 52 patients and 17 healthy controls. In four patients, CP convertase activity was prolonged compared to healthy controls, i.e. the enzymatic complex was stabilized. In three patients (2 C3G, 1 IC-MPGN) the convertase stabilization was caused by immunoglobulins, indicating the presence of autoantibodies named C4 nephritic factors (C4NeFs). Importantly, the assay also enabled detection of non-immunoglobulin-mediated stabilization of the CP convertase in one patient with C3G. Prolonged CP convertase activity coincided with C3NeF activity in all patients and for up to 70 months of observation. Crucially, experiments with C3-depleted serum showed that C4NeFs stabilized the CP C3 convertase (C4bC2a), that does not contain C3NeF epitopes. All patients with prolonged CP convertase activity showed clear signs of complement activation, i.e. lowered C3 and C5 levels and elevated levels of C3d, C3bc, C3bBbP, and C5b-9. In conclusion, this work provides new insights into the diverse aspects and (non-)immunoglobulin nature of factors causing CP convertase overactivity in C3G/IC-MPGN.</p

    Challenges in diagnostic testing of nephritic factors

    Get PDF
    Nephritic factors (NeFs) are autoantibodies promoting the activity of the central enzymes of the complement cascade, an important first line of defense of our innate immune system. NeFs stabilize the complement convertase complexes and prevent their natural and regulator-mediated decay. They are mostly associated with rare complement-mediated kidney disorders, in particular with C3 glomerulopathy and related diseases. Although these autoantibodies were already described more than 50 years ago, measuring NeFs for diagnostic purposes remains difficult, and this also complicates our understanding of their clinical associations. In this review, we address the multifactorial challenges of NeF diagnostics. We describe the diseases NeFs are associated with, the heterogenic mechanisms of action of different NeF types, the different methods available in laboratories used for their detection, and efforts for standardization. Finally, we discuss the importance of proper NeF diagnostics for understanding the clinical impact of these autoantibodies in disease pathophysiology and for considering future complement-directed therapy

    Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics

    Get PDF
    Item does not contain fulltextBACKGROUND: Mutations in complement factor H (CFH), factor I (CFI), factor B (CFB), thrombomodulin (THBD), C3 and membrane cofactor protein (MCP), and autoantibodies against factor H (alphaFH) with or without a homozygous deletion in CFH-related protein 1 and 3 (CFHR1/3) predispose development of atypical hemolytic uremic syndrome (aHUS). METHODS: Different mutations in genes encoding complement proteins in 45 pediatric aHUS patients were retrospectively linked with clinical features, treatment, and outcome. RESULTS: In 47% of the study participants, potentially pathogenic genetic anomalies were found (5xCFH, 4xMCP, and 4xC3, 3xCFI, 2xCFB, 6xalphaFH, of which five had CFHR1/3); four patients carried combined genetic defects or a mutation, together with alphaFH. In the majority (87%), disease onset was preceeded by a triggering event; in 25% of cases diarrhea was the presenting symptom. More than 50% had normal serum C3 levels at presentation. Relapses were seen in half of the patients, and there was renal graft failure in all except one case following transplant. CONCLUSIONS: Performing adequate DNA analysis is essential for treatment and positive outcome in children with aHUS. The impact of intensive initial therapy and renal replacement therapy, as well as the high risk of recurrence of aHUS in renal transplant, warrants further understanding of the pathogenesis, which will lead to better treatment options.01 augustus 201
    • …
    corecore