334 research outputs found

    Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular mechanisms to treatment for secretory diarrhoeas

    Get PDF
    Cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter. It acts as an anion‐selective channel that drives osmotic fluid transport across many epithelia. In the gut, CFTR is crucial for maintaining fluid and acid‐base homeostasis, and its activity is tightly controlled by multiple neuro‐endocrine factors. However, microbial toxins can disrupt this intricate control mechanism and trigger protracted activation of CFTR. This results in the massive faecal water loss, metabolic acidosis and dehydration that characterize secretory diarrhoeas, a major cause of malnutrition and death of children under 5 years of age. Compounds that inhibit CFTR could improve emergency treatment of diarrhoeal disease. Drawing on recent structural and functional insight, we discuss how existing CFTR inhibitors function at the molecular and cellular level. We compare their mechanisms of action to those of inhibitors of related ABC transporters, revealing some unexpected features of drug action on CFTR. Although challenges remain, especially relating to the practical effectiveness of currently available CFTR inhibitors, we discuss how recent technological advances might help develop therapies to better address this important global health need

    Cardiac amyloidosis: the need for early diagnosis

    Get PDF
    Amyloidosis is a collection of systemic diseases characterised by misfolding of previously soluble precursor proteins that become infiltrative depositions, thereby disrupting normal organ structure and function. In the heart, accumulating amyloid fibrils lead to progressive ventricular wall thickening and stiffness, resulting in diastolic dysfunction gradually progressing to a restrictive cardiomyopathy. The main types of cardiac amyloidosis are amyloid light chain (AL) amyloidosis caused by an underlying plasma cell dyscrasia, amyloid transthyretin (TTR) amyloidosis of wild-type (normal) TTR at older age (ATTRwt) and hereditary or mutant amyloid TTR (ATTRm) in which a genetic mutation leads to an unstable TTR protein. Overall survival is poor once heart failure develops, underlining the need for early referral and diagnosis. Treatment for AL amyloidosis has improved markedly over the last decades, and TTR amyloidosis gene silencers and orally available transthyretin stabilisers are ready to enter the clinical arena after recent positive outcome trials. Novel therapies aiming at fibril degradation with monoclonal antibodies are under investigation. In this review, we focus on ‘red flag’ signs and symptoms, diagnosis and management of cardiac amyloidosis which differs considerably from the general management of heart failure. Only by increasing awareness, prognosis for patients with this devastating disease can be improved

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Surface modification of Ti-6Al-4V alloy for biomineralization and specific biological response: Part II, Alkaline phosphatase grafting

    Get PDF
    Titanium and its alloys are the most widespread materials for the realization of orthopaedic and dental implants due to their good mechanical properties and biocompatibility. Surface functionalization of biomaterials aimed to improve and quicken implant integration and tissue regeneration is an active research field. The opportunity to confer biological activity (ability to directly stimulate cells with proper biological signals) to the Ti6Al4 V alloy, previously modified to be bioactive from the inorganic point of view (apatite precipitation), was explored in this research work. The alkaline phosphatase (ALP) enzyme was grafted to metal surface via tresyl chloride activation, maintaining its activity. A synergistic effect between biological functionalization and inorganic bioactivity was observed

    Optimization of Suture-Free Laser-Assisted Vessel Repair by Solder-Doped Electrospun Poly(ε-caprolactone) Scaffold

    Get PDF
    Poor welding strength constitutes an obstacle in the clinical employment of laser-assisted vascular repair (LAVR) and anastomosis. We therefore investigated the feasibility of using electrospun poly(ε-caprolactone) (PCL) scaffold as reinforcement material in LAVR of medium-sized vessels. In vitro solder-doped scaffold LAVR (ssLAVR) was performed on porcine carotid arteries or abdominal aortas using a 670-nm diode laser, a solder composed of 50% bovine serum albumin and 0.5% methylene blue, and electrospun PCL scaffolds. The correlation between leaking point pressures (LPPs) and arterial diameter, the extent of thermal damage, structural and mechanical alterations of the scaffold following ssLAVR, and the weak point were investigated. A strong negative correlation existed between LPP and vessel diameter, albeit LPP (484 ± 111 mmHg) remained well above pathophysiological pressures. Histological analysis revealed that thermal damage extended into the medial layer with a well-preserved internal elastic lamina and endothelial cells. Laser irradiation of PCL fibers and coagulation of solder material resulted in a strong and stiff scaffold. The weak point of the ssLAVR modality was predominantly characterized by cohesive failure. In conclusion, ssLAVR produced supraphysiological LPPs and limited tissue damage. Despite heat-induced structural/mechanical alterations of the scaffold, PCL is a suitable polymer for weld reinforcement in medium-sized vessel ssLAVR

    The possibility of evidence-based psychiatry: depression as a case

    Get PDF
    Considering psychiatry as a medical discipline, a diagnosis identifying a disorder should lead to an effective therapy. Such presumed causality is the basis of evidence-based psychiatry. We examined the strengths and weaknesses of research onto the causality of relationship between diagnosis and therapy of major depressive disorder and suggest what could be done to strengthen eventual claims on causality. Four obstacles for a rational evidence-based psychiatry were recognised. First, current classification systems are scientifically nonfalsifiable. Second, cerebral processes are—at least to some extent—nondeterministic, i.e. they are random, stochastic and/or chaotic. Third, the vague or lack of relationship between therapeutic regimens and suspected pathogenesis. Fourth, the inadequacy of tools to diagnose and delineate a functional disorder. We suggest a strategy to identify diagnostic prototypes that are characterised by a limited number of parameters (symptoms, markers and other characteristics). A prototypical diagnosis that may either support or reject particular elements of current diagnostic systems. Nevertheless, one faces the possibility that psychiatry will remain a relatively weak evidence-based medical discipline
    corecore