45 research outputs found

    Deep-sea predator niche segregation revealed by combined cetacean biologging and eDNA analysis of cephalopod prey

    Get PDF
    Fundamental insight on predator-prey dynamics in the deep sea is hampered by a lack of combined data on hunting behavior and prey spectra. Deep-sea niche segregation may evolve when predators target specific prey communities, but this hypothesis remains untested. We combined environmental DNA (eDNA) metabarcoding with biologging to assess cephalopod community composition in the deep-sea foraging habitat of two top predator cetaceans. Risso’s dolphin and Cuvier’s beaked whale selectively targeted distinct epi/meso- and bathypelagic foraging zones, holding eDNA of 39 cephalopod taxa, including 22 known prey. Contrary to expectation, extensive taxonomic overlap in prey spectra between foraging zones indicated that predator niche segregation was not driven by prey community composition alone. Instead, intraspecific prey spectrum differences may drive differentiation for hunting fewer, more calorific, mature cephalopods in deeper waters. The novel combination of methods presented here holds great promise to disclose elusive deep-sea predator-prey systems, aiding in their protection

    Addition of PTK787/ZK 222584 can lower the dosage of amsacrine to achieve equal amounts of acute myeloid leukemia cell death

    Get PDF
    Acute myeloid leukemia (AML) is a disease with a poor prognosis. It has been demonstrated that AML cells express the vascular endothelial growth factors, VEGFA and VEGFC, as well as kinase insert domain-containing receptor (VEGFR2), the main receptor for downstream effects, resulting in an autocrine pathway for cell survival. This study investigates the role of the VEGFR inhibitor PTK787/ZK 222584 in leukemic cell death, and the possibility of an additional effect on cell death by a chemotherapeutic drug, amsacrine. In three AML cell lines and 33 pediatric AML patient samples, we performed total cell-kill assays to determine the percentages of cell death achieved by PTK787/ZK 222584 and/or amsacrine. Both drugs induced AML cell death. Using a response surface analysis, we could show that, in cell lines as well as in primary AML blasts, an equal magnitude of leukemic cell death could be obtained when lower doses of the more toxic amsacrine were combined with low dosages of the less toxic VEGFR inhibitor. This study shows that PTK787/ ZK 222584 might have more clinical potential in AML when combined with a chemotherapeutic drug such as amsacrine. In future, it will be interesting to study whether the complications and the long-term effects of chemotherapy can be reduced by lowering the dosages of amsacrine, and by replacing it with other drugs with lower toxicity profiles, such as PTK787/ZK 222584

    Association Between an Increase in Serum Sodium and In-Hospital Mortality in Critically Ill Patients*

    Get PDF
    OBJECTIVES: In critically ill patients, dysnatremia is common, and in these patients, in-hospital mortality is higher. It remains unknown whether changes of serum sodium after ICU admission affect mortality, especially whether normalization of mild hyponatremia improves survival. DESIGN: Retrospective cohort study. SETTING: Ten Dutch ICUs between January 2011 and April 2017. PATIENTS: Adult patients were included if at least one serum sodium measurement within 24 hours of ICU admission and at least one serum sodium measurement 24-48 hours after ICU admission were available. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A logistic regression model adjusted for age, sex, and Acute Physiology and Chronic Health Evaluation-IV-predicted mortality was used to assess the difference between mean of sodium measurements 24-48 hours after ICU admission and first serum sodium measurement at ICU admission (Δ48 hr-[Na]) and in-hospital mortality. In total, 36,660 patients were included for analysis. An increase in serum sodium was independently associated with a higher risk of in-hospital mortality in patients admitted with normonatremia (Δ48 hr-[Na] 5-10 mmol/L odds ratio: 1.61 [1.44-1.79], Δ48 hr-[Na] > 10 mmol/L odds ratio: 4.10 [3.20-5.24]) and hypernatremia (Δ48 hr-[Na] 5-10 mmol/L odds ratio: 1.47 [1.02-2.14], Δ48 hr-[Na] > 10 mmol/L odds ratio: 8.46 [3.31-21.64]). In patients admitted with mild hyponatremia and Δ48 hr-[Na] greater than 5 mmol/L, no significant difference in hospital mortality was found (odds ratio, 1.11 [0.99-1.25]). CONCLUSIONS: An increase in serum sodium in the first 48 hours of ICU admission was associated with higher in-hospital mortality in patients admitted with normonatremia and in patients admitted with hypernatremia

    Association between duration of early empiric antibiotics and necrotizing enterocolitis and late-onset sepsis in preterm infants:a multicenter cohort study

    Get PDF
    The threshold to initiate empiric antibiotics for suspicion of early-onset sepsis (EOS) is low in preterm infants. Antibiotics’ effects on short-term outcomes have recently been debated. We aimed at exploring the extent of early empiric antibiotic exposure (EEAE) in preterm infants and the association between the duration of EEAE with necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) within different EEAE groups. EEAE practice for suspicion of EOS was evaluated in all included infants (gestational age 72 h). Infants with EEAE ≤ 72 h had a lower incidence of NEC compared to both infants without EEAE (adjusted odds ratio (aOR) 0.39; 95% confidence interval (CI) [0.19–0.80]; p = 0.01) and with prolonged EEAE (> 72 h) (aOR [95%CI]: 0.58 [0.35–0.96]; p = 0.03). With every additional day of EEAE, LOS incidence decreased (aOR [95%CI]: 0.90 [0.85–0.97]; p = 0.003). Conclusion: Almost 90% of preterm infants who have negative blood culture results in the first 72 h of life are exposed to EEAE under suspicion of EOS. One-fourth has prolonged EEAE. Duration of EEAE was differently associated with NEC and LOS incidence. The effects of antibiotics, and potentially induced microbial dysbiosis related to development of NEC and LOS, should further be explored.What is Known:• Preterm infants often receive antibiotics empirically directly after birth for suspicion of early-onset sepsis.• The effects of the duration of early empirical antibiotic exposure on the risk for necrotizing enterocolitis and late-onset sepsis are debated.What is New:• Almost 90% of preterm infants with a gestational age below 30 weeks are exposed to antibiotics empirically after birth despite negative culture results. In a quarter of these culture-negative infants, empirical antibiotics are prolonged.• A short course of empirical antibiotics (≤72h) is associated with decreased odds for necrotizing enterocolitis compared to both prolonged (>72h) or no empirical antibiotics after birth. Furthermore, every additional day of empirical antibiotic exposure is associated with decreased risk for late-onset sepsis in the first month of life

    Association between duration of early empiric antibiotics and necrotizing enterocolitis and late-onset sepsis in preterm infants:a multicenter cohort study

    Get PDF
    The threshold to initiate empiric antibiotics for suspicion of early-onset sepsis (EOS) is low in preterm infants. Antibiotics’ effects on short-term outcomes have recently been debated. We aimed at exploring the extent of early empiric antibiotic exposure (EEAE) in preterm infants and the association between the duration of EEAE with necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) within different EEAE groups. EEAE practice for suspicion of EOS was evaluated in all included infants (gestational age &lt; 30 weeks) born in 9 centers in the Netherlands and Belgium between Oct. 2014 and Jan. 2019. EEAE association with NEC and LOS development was analyzed by multivariate regression. After excluding 56 EOS cases, 1259 infants were included. A total of 1122 infants (89.1%) were exposed to empirical antibiotics for the suspicion of EOS of whom 802 (63.7%) had short (≤ 72 h) and 320 (25.4%) prolonged EEAE (&gt; 72 h). Infants with EEAE ≤ 72 h had a lower incidence of NEC compared to both infants without EEAE (adjusted odds ratio (aOR) 0.39; 95% confidence interval (CI) [0.19–0.80]; p = 0.01) and with prolonged EEAE (&gt; 72 h) (aOR [95%CI]: 0.58 [0.35–0.96]; p = 0.03). With every additional day of EEAE, LOS incidence decreased (aOR [95%CI]: 0.90 [0.85–0.97]; p = 0.003). Conclusion: Almost 90% of preterm infants who have negative blood culture results in the first 72 h of life are exposed to EEAE under suspicion of EOS. One-fourth has prolonged EEAE. Duration of EEAE was differently associated with NEC and LOS incidence. The effects of antibiotics, and potentially induced microbial dysbiosis related to development of NEC and LOS, should further be explored.What is Known:• Preterm infants often receive antibiotics empirically directly after birth for suspicion of early-onset sepsis.• The effects of the duration of early empirical antibiotic exposure on the risk for necrotizing enterocolitis and late-onset sepsis are debated.What is New:• Almost 90% of preterm infants with a gestational age below 30 weeks are exposed to antibiotics empirically after birth despite negative culture results. In a quarter of these culture-negative infants, empirical antibiotics are prolonged.• A short course of empirical antibiotics (≤72h) is associated with decreased odds for necrotizing enterocolitis compared to both prolonged (&gt;72h) or no empirical antibiotics after birth. Furthermore, every additional day of empirical antibiotic exposure is associated with decreased risk for late-onset sepsis in the first month of life.</p

    Evidence Based Selection of Housekeeping Genes

    Get PDF
    For accurate and reliable gene expression analysis, normalization of gene expression data against housekeeping genes (reference or internal control genes) is required. It is known that commonly used housekeeping genes (e.g. ACTB, GAPDH, HPRT1, and B2M) vary considerably under different experimental conditions and therefore their use for normalization is limited. We performed a meta-analysis of 13,629 human gene array samples in order to identify the most stable expressed genes. Here we show novel candidate housekeeping genes (e.g. RPS13, RPL27, RPS20 and OAZ1) with enhanced stability among a multitude of different cell types and varying experimental conditions. None of the commonly used housekeeping genes were present in the top 50 of the most stable expressed genes. In addition, using 2,543 diverse mouse gene array samples we were able to confirm the enhanced stability of the candidate novel housekeeping genes in another mammalian species. Therefore, the identified novel candidate housekeeping genes seem to be the most appropriate choice for normalizing gene expression data

    A New Perspective on Transcriptional System Regulation (TSR): Towards TSR Profiling

    Get PDF
    It has been hypothesized that the net expression of a gene is determined by the combined effects of various transcriptional system regulators (TSRs). However, characterizing the complexity of regulation of the transcriptome is a major challenge. Principal component analysis on 17,550 heterogeneous human microarray experiments revealed that 50 orthogonal factors (hereafter called TSRs) are able to capture 64% of the variability in expression in a wide range of experimental conditions and tissues. We identified gene clusters controlled in the same direction and show that gene expression can be conceptualized as a process influenced by a fairly limited set of TSRs. Furthermore, TSRs can be linked to biological functions, as we demonstrate a strong relation between TSR-related gene clusters and biological functionality as well as cellular localization, i.e. gene products of similarly regulated genes by a specific TSR are located in identical parts of a cell. Using 3,934 diverse mouse microarray experiments we found striking similarities in transcriptional system regulation between human and mouse. Our results give biological insights into regulation of the cellular transcriptome and provide a tool to characterize expression profiles with highly reliable TSRs instead of thousands of individual genes, leading to a >500-fold reduction of complexity with just 50 TSRs. This might open new avenues for those performing gene expression profiling studies

    Adverse drug events caused by three high-risk drug–drug interactions in patients admitted to intensive care units:A multicentre retrospective observational study

    Get PDF
    Aims: Knowledge about adverse drug events caused by drug–drug interactions (DDI-ADEs) is limited. We aimed to provide detailed insights about DDI-ADEs related to three frequent, high-risk potential DDIs (pDDIs) in the critical care setting: pDDIs with international normalized ratio increase (INR+) potential, pDDIs with acute kidney injury (AKI) potential, and pDDIs with QTc prolongation potential. Methods: We extracted routinely collected retrospective data from electronic health records of intensive care units (ICUs) patients (≥18 years), admitted to ten hospitals in the Netherlands between January 2010 and September 2019. We used computerized triggers (e-triggers) to preselect patients with potential DDI-ADEs. Between September 2020 and October 2021, clinical experts conducted a retrospective manual patient chart review on a subset of preselected patients, and assessed causality, severity, preventability, and contribution to ICU length of stay of DDI-ADEs using internationally prevailing standards. Results: In total 85 422 patients with ≥1 pDDI were included. Of these patients, 32 820 (38.4%) have been exposed to one of the three pDDIs. In the exposed group, 1141 (3.5%) patients were preselected using e-triggers. Of 237 patients (21%) assessed, 155 (65.4%) experienced an actual DDI-ADE; 52.9% had severity level of serious or higher, 75.5% were preventable, and 19.3% contributed to a longer ICU length of stay. The positive predictive value was the highest for DDI-INR+ e-trigger (0.76), followed by DDI-AKI e-trigger (0.57). Conclusion: The highly preventable nature and severity of DDI-ADEs, calls for action to optimize ICU patient safety. Use of e-triggers proved to be a promising preselection strategy.</p

    Adverse drug events caused by three high-risk drug–drug interactions in patients admitted to intensive care units:A multicentre retrospective observational study

    Get PDF
    Aims: Knowledge about adverse drug events caused by drug–drug interactions (DDI-ADEs) is limited. We aimed to provide detailed insights about DDI-ADEs related to three frequent, high-risk potential DDIs (pDDIs) in the critical care setting: pDDIs with international normalized ratio increase (INR+) potential, pDDIs with acute kidney injury (AKI) potential, and pDDIs with QTc prolongation potential. Methods: We extracted routinely collected retrospective data from electronic health records of intensive care units (ICUs) patients (≥18 years), admitted to ten hospitals in the Netherlands between January 2010 and September 2019. We used computerized triggers (e-triggers) to preselect patients with potential DDI-ADEs. Between September 2020 and October 2021, clinical experts conducted a retrospective manual patient chart review on a subset of preselected patients, and assessed causality, severity, preventability, and contribution to ICU length of stay of DDI-ADEs using internationally prevailing standards. Results: In total 85 422 patients with ≥1 pDDI were included. Of these patients, 32 820 (38.4%) have been exposed to one of the three pDDIs. In the exposed group, 1141 (3.5%) patients were preselected using e-triggers. Of 237 patients (21%) assessed, 155 (65.4%) experienced an actual DDI-ADE; 52.9% had severity level of serious or higher, 75.5% were preventable, and 19.3% contributed to a longer ICU length of stay. The positive predictive value was the highest for DDI-INR+ e-trigger (0.76), followed by DDI-AKI e-trigger (0.57). Conclusion: The highly preventable nature and severity of DDI-ADEs, calls for action to optimize ICU patient safety. Use of e-triggers proved to be a promising preselection strategy.</p
    corecore