10 research outputs found

    Developing more generalizable prediction models from pooled studies and large clustered data sets.

    Get PDF
    Prediction models often yield inaccurate predictions for new individuals. Large data sets from pooled studies or electronic healthcare records may alleviate this with an increased sample size and variability in sample characteristics. However, existing strategies for prediction model development generally do not account for heterogeneity in predictor-outcome associations between different settings and populations. This limits the generalizability of developed models (even from large, combined, clustered data sets) and necessitates local revisions. We aim to develop methodology for producing prediction models that require less tailoring to different settings and populations. We adopt internal-external cross-validation to assess and reduce heterogeneity in models' predictive performance during the development. We propose a predictor selection algorithm that optimizes the (weighted) average performance while minimizing its variability across the hold-out clusters (or studies). Predictors are added iteratively until the estimated generalizability is optimized. We illustrate this by developing a model for predicting the risk of atrial fibrillation and updating an existing one for diagnosing deep vein thrombosis, using individual participant data from 20 cohorts (N = 10 873) and 11 diagnostic studies (N = 10 014), respectively. Meta-analysis of calibration and discrimination performance in each hold-out cluster shows that trade-offs between average and heterogeneity of performance occurred. Our methodology enables the assessment of heterogeneity of prediction model performance during model development in multiple or clustered data sets, thereby informing researchers on predictor selection to improve the generalizability to different settings and populations, and reduce the need for model tailoring. Our methodology has been implemented in the R package metamisc

    Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

    Get PDF
    OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care

    High-throughput strategies for the discovery and engineering of enzymes for biocatalysis

    No full text

    Body mass index and complications following major gastrointestinal surgery: A prospective, international cohort study and meta-analysis

    Get PDF
    Aim Previous studies reported conflicting evidence on the effects of obesity on outcomes after gastrointestinal surgery. The aims of this study were to explore the relationship of obesity with major postoperative complications in an international cohort and to present a metaanalysis of all available prospective data. Methods This prospective, multicentre study included adults undergoing both elective and emergency gastrointestinal resection, reversal of stoma or formation of stoma. The primary end-point was 30-day major complications (Clavien\u2013Dindo Grades III\u2013V). A systematic search was undertaken for studies assessing the relationship between obesity and major complications after gastrointestinal surgery. Individual patient meta-analysis was used to analyse pooled results. Results This study included 2519 patients across 127 centres, of whom 560 (22.2%) were obese. Unadjusted major complication rates were lower in obese vs normal weight patients (13.0% vs 16.2%, respectively), but this did not reach statistical significance (P = 0.863) on multivariate analysis for patients having surgery for either malignant or benign conditions. Individual patient meta-analysis demonstrated that obese patients undergoing surgery formalignancy were at increased risk of major complications (OR 2.10, 95% CI 1.49\u20132.96, P < 0.001), whereas obese patients undergoing surgery for benign indications were at decreased risk (OR 0.59, 95% CI 0.46\u20130.75, P < 0.001) compared to normal weight patients. Conclusions In our international data, obesity was not found to be associated with major complications following gastrointestinal surgery. Meta-analysis of available prospective data made a novel finding of obesity being associated with different outcomes depending on whether patients were undergoing surgery for benign or malignant disease
    corecore