12,515 research outputs found

    Collective excitations and low temperature transport properties of bismuth

    Full text link
    We examine the influence of collective excitations on the transport properties (resistivity, magneto- optical conductivity) for semimetals, focusing on the case of bismuth. We show, using an RPA approximation, that the properties of the system are drastically affected by the presence of an acoustic plasmon mode, consequence of the presence of two types of carriers (electrons and holes) in this system. We found a crossover temperature T* separating two different regimes of transport. At high temperatures T > T* we show that Baber scattering explains quantitatively the DC resistivity experiments, while at low temperatures T < T* interactions of the carriers with this collective mode lead to a T^5 behavior of the resistivity. We examine other consequences of the presence of this mode, and in particular predict a two plasmon edge feature in the magneto-optical conductivity. We compare our results with the experimental findings on bismuth. We discuss the limitations and extensions of our results beyond the RPA approximation, and examine the case of other semimetals such as graphite or 1T-TiSe_2

    Highly erosive glaciers on Mars - the role of water

    Get PDF
    International audiencePolewards of 30 ‱ in each hemisphere, the surface of Mars hosts a suite of landforms reminiscent of glacial landscapes on Earth. Amongst these landforms are: 1) Viscous Flow Features (VFF), which resemble glaciers on Earth and are thought to contain large volumes of water ice, 2) martian gullies which are km-scale features resembling water-eroded gullies on Earth and 3) arcuate ridges thought to be moraines from previous glaciations. Gullies have been long-associated with a surface unit originally called "pasted-on terrain" and now often called the "latitude dependant mantle". Arcuate ridges are often found at the base of hillslopes with gullies, but are also found on hillslopes with pasted-on terrain and no gullies. We have found a systematic lowering of the slope of the bedrock exposure located topographically above the pasted-on terrain whether that same slope hosts gullies or not. The lowered bedrock exposures display a different surface texture from bedrock exposed on other parts of the crater wall and from fresh crater walls-it appears fragmented and has reduced relief. Using 1-m-digital elevation models from the High Resolution Imaging Science Experiment (HiRISE) we compared the slopes of eight "eroded" craters and seven unmodified craters. We estimated their age using the crater size-frequency distribution of small craters on their ejecta blankets. From this information we calculated bedrock retreat rates for the eroded craters and found they were up to ∌103 m Myr-1-equivalent to erosion rates of wet-based glaciers on Earth. This is several orders of magnitude higher than previous estimates of erosion by VFF (10-2-101 m Myr-1), which themselves are roughly equivalent to cold-based glaciers on Earth. Such erosion rates are sufficient to erase previously existing landforms, such as martian gullies. We hypothesise, therefore, that the pasted-on terrain is a glacial deposit, overturning its previous interpretation as an airfall deposit of ice nucleated on dust. We maintain the interpretation of the arcuate ridges as moraines, but further conclude that they are likely the result of glaciotectonic deformation of sub-marginal and proglacial sediment in the presence of sediment pore-water. We do not support the generation of large quantities of glacial meltwater because it would have broken-up and degraded the arcuate ridges and pasted-on terrain an produced a suite of landforms (e.g., hummocky moraine, lacustrine forms, outwash plains, eskers) which are not observed

    On the Integrability and Chaos of an N=2 Maxwell-Chern-Simons-Higgs Mechanical Model

    Full text link
    We apply different integrability analysis procedures to a reduced (spatially homogeneous) mechanical system derived from an off-shell non-minimally coupled N=2 Maxwell-Chern-Simons-Higgs model that presents BPS topological vortex excitations, numerically obtained with an ansatz adopted in a special - critical coupling - parametric regime. As a counterpart of the regularity associated to the static soliton-like solution, we investigate the possibility of chaotic dynamics in the evolution of the spatially homogeneous reduced system, descendant from the full N=2 model under consideration. The originally rich content of symmetries and interactions, N=2 susy and non-minimal coupling, singles out the proposed model as an interesting framework for the investigation of the role played by (super-)symmetries and parametric domains in the triggering/control of chaotic behavior in gauge systems. After writing down effective Lagrangian and Hamiltonian functions, and establishing the corresponding canonical Hamilton equations, we apply global integrability Noether point symmetries and Painleveproperty criteria to both the general and the critical coupling regimes. As a non-integrable character is detected by the pair of analytical criteria applied, we perform suitable numerical simulations, as we seek for chaotic patterns in the system evolution. Finally, we present some Comments on the results and perspectives for further investigations and forthcoming communications.Comment: 18 pages, 5 figure

    The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas

    Get PDF
    This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism

    Depolarisation cooling of an atomic cloud

    Full text link
    We propose a cooling scheme based on depolarisation of a polarised cloud of trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the coupling between the internal spin reservoir of the cloud and the external kinetic reservoir via dipolar relaxation to reduce the temperature of the cloud. By optical pumping one can cool the spin reservoir and force the cooling process. In case of a trapped gas of dipolar chromium atoms, we show that this cooling technique can be performed continuously and used to approach the critical phase space density for BECComment: 8 pages, 5 figure
    • 

    corecore