10,412 research outputs found

    The efficiency of education in generating literacy: a stochastic frontier approach

    Get PDF
    The growing importance attached to education as a key factor to improve economic performance coupled with the persistent scarcity of resources for education makes it important that skills and literacy are produced efficiently. This paper provides an international comparison of the efficiency of literacy production. We find substantial differences between countries in levels of literacy, differences in literacy between education levels and differences in the efficiency of literacy production. There are some notable differences between more Anglo-Saxon countries and the Continental European countries. The findings suggest that in almost all countries the scope for efficiency improvements in education is large. So even without major increases in (public) funding, improvements in educational outcomes are achievable. We can get better value for the money we spend on education.

    Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade

    Full text link
    We develop a new 3+1 dimensional Monte Carlo cascade solving the kinetic on-shell Boltzmann equations for partons including the inelastic gg ggg pQCD processes. The back reaction channel is treated -- for the first time -- fully consistently within this scheme. An extended stochastic method is used to solve the collision integral. The frame dependence and convergency are studied for a fixed tube with thermal initial conditions. The detailed numerical analysis shows that the stochastic method is fully covariant and that convergency is achieved more efficiently than within a standard geometrical formulation of the collision term, especially for high gluon interaction rates. The cascade is then applied to simulate parton evolution and to investigate thermalization of gluons for a central Au+Au collision at RHIC energy. For this study the initial conditions are assumed to be generated by independent minijets with p_T > p_0=2 GeV. With that choice it is demonstrated that overall kinetic equilibration is driven mainly by the inelastic processes and is achieved on a scale of 1 fm/c. The further evolution of the expanding gluonic matter in the central region then shows almost an ideal hydrodynamical behavior. In addition, full chemical equilibration of the gluons follows on a longer timescale of about 3 fm/c.Comment: 121 pages with 55 figures, revised version. Two eps-figures and comments are added. Formula (54) which has typo in journal version is given correctl

    Momentum of an electromagnetic wave in dielectric media

    Get PDF
    Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy--momentum tensor is complete on its own. When the appropriate accompanying energy--momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0 from Eq.(44

    Expert chess memory: Revisiting the chunking hypothesis

    Get PDF
    After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Бизнес-планирование во внешнеэкономической деятельности (ВЭД) предприятия, как инструмент качества корпоративного управления

    Get PDF
    In vitro models, including the widely used PC12 cell line, can increase insight into cellular and molecular mechanisms underlying neurodegenerative processes. An important determinant for the vulnerability of cells for chemical insults may be the endogenous level of oxidative stress. To test this hypothesis, we induced different degrees of cellular stress in PC12 cells by altering their ROS production using dexamethasone, l-dihydroxyphenylalanine (l-DOPA) and iron. These different PC12 models were subsequently used to investigate whether the degree of cellular stress could increase their susceptibility to environmental pollutants. The characteristics of these stressed PC12 cell subtypes and their vulnerability to the reference pesticide rotenone were investigated using a combination of biochemical (oxidative stress, cell viability, and α-synuclein expression) and functional (fluorescent calcium imaging) assays. Our combined data demonstrate that chemically-induced stress in PC12 cells increases the production of reactive oxygen species (ROS) and alters calcium homeostasis and α-synuclein expression. Moreover, l-DOPA and FeSO4 pre-treated PC12 cells show increased vulnerability to rotenone-induced cytotoxicity. These chemically-stressed cell models may therefore prove valuable to investigate how increased cellular stress influences neurotoxic outcome, for example in case of mixture toxicity

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data

    The conduction pathway of potassium channels is water free under physiological conditions.

    No full text
    Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism

    Collisional Semiclassical Aproximations in Phase-Space Representation

    Get PDF
    The Gaussian Wave-Packet phase-space representation is used to show that the expansion in powers of \hbar of the quantum Liouville propagator leads, in the zeroth order term, to results close to those obtained in the statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that propagating the Wigner distribution along the classical trajectories the amount of error is less than that coming from propagating the Gaussian distribution along classical trajectories.Comment: 20 pages, REVTEX, no figures, 3 tables include

    Dynamical description of vesicle growth and shape change

    Full text link
    We systematize and extend the description of vesicle growth and shape change using linear nonequilibrium thermodynamics. By restricting the study to shape changes from spheres to axisymmetric ellipsoids, we are able to give a consistent formulation which includes the lateral tension of the vesicle membrane. This allows us to generalize and correct a previous calculation. Our present calculations suggest that, for small growing vesicles, a prolate ellipsoidal shape should be favored over oblate ellipsoids, whereas for large growing vesicles oblates should be favored over prolates. The validity of this prediction is examined in the light of the various assumptions made in its derivation.Comment: 6 page
    corecore