12 research outputs found

    C-tactile afferent stimulating touch carries a positive affective value

    Get PDF
    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly

    More Than Smell - COVID-19 Is Associated With Severe Impairment of Smell,Taste, and Chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms

    More Data, Please: Machine Learning to Advance the Multidisciplinary Science of Human Sociochemistry.

    Get PDF
    Communication constitutes the core of human life. A large portion of our everyday social interactions is non-verbal. Of the sensory modalities we use for non-verbal communication, olfaction (i.e., the sense of smell) is often considered the most enigmatic medium. Outside of our awareness, smells provide information about our identity, emotions, gender, mate compatibility, illness, and potentially more. Yet, body odors are astonishingly complex, with their composition being influenced by various factors. Is there a chemical basis of olfactory communication? Can we identify molecules predictive of psychological states and traits? We propose that answering these questions requires integrating two disciplines: psychology and chemistry. This new field, coined sociochemistry, faces new challenges emerging from the sheer amount of factors causing variability in chemical composition of body odorants on the one hand (e.g., diet, hygiene, skin bacteria, hormones, genes), and variability in psychological states and traits on the other (e.g., genes, culture, hormones, internal state, context). In past research, the reality of these high-dimensional data has been reduced in an attempt to isolate unidimensional factors in small, homogenous samples under tightly controlled settings. Here, we propose big data approaches to establish novel links between chemical and psychological data on a large scale from heterogeneous samples in ecologically valid settings. This approach would increase our grip on the way chemical signals non-verbally and subconsciously affect our social lives across contexts

    The Subtle Signaling Strength of Smells: A Masked Odor Enhances Interpersonal Trust.

    Get PDF
    Most everyday smells, from lavender to body odors, are complex odorant mixtures that "host" particular compounds that guide (social) behavior and motivation (biomarkers). A key element of social behavior is interpersonal trust, and building on previous research showing that (i) lavender odor can enhance trust, and that (ii) certain compounds in body odor can reduce stress in mice and humans (called "social buffering"), we examined whether a grassy-smelling compound found in both body odors and lavender, hexanal, would enhance interpersonal trust. Notably, we applied odor masking to explore whether trust could be influenced subconsciously by masked (i.e., undetectable) hexanal. In Study 1 (between-subjects), 90 females played a Trust Game while they either smelled hexanal (0.01% v/v), clove odor (eugenol: 10% v/v), or hexanal masked by clove odor (a mix of the former). As a sign of higher trust, participants gave more money to a trustee while exposed to masked hexanal (vs. the mask: eugenol). In Study 2 (within-subjects, double-blind), another sample of 35 females smelled the same three odors, while they rated the trustworthiness of a spectrum of faces that varied on trustworthiness. Controlling for subjective odor intensity and pleasantness and substantiating that masked hexanal could not be distinguished from the mask, faces were perceived as more trustworthy during exposure to masked hexanal (vs. the mask: eugenol). Whereas non-masked hexanal also increased face trustworthiness ratings, these effects disappeared after controlling for the odor's subjective intensity and pleasantness. The combined results bring new evidence that trust can be enhanced implicitly via undetected smells
    corecore