695 research outputs found

    Short- and long-term effects of a physical activity counselling programme in COPD:A randomized controlled trial

    Get PDF
    SummaryBackgroundWe were interested in the effects of a physical activity (PA) counselling programme in three groups of COPD patients from general practice (primary care), outpatient clinic (secondary care) and pulmonary rehabilitation (PR).MethodsIn this randomized controlled trial 155 COPD patients, 102 males, median (IQR) age 62 (54–69) y, FEV1predicted 60 (40–75) % were assigned to a 12-weeks' physical activity counselling programme or usual care. Physical activity (pedometer (Yamax SW200) and metabolic equivalents), exercise capacity (6-min walking distance) and quality of life (Chronic Respiratory Questionnaire and Clinical COPD Questionnaire) were assessed at baseline, after three and 15 months.ResultsA significant difference between the counselling and usual care group in daily steps (803 steps, p = 0.001) and daily physical activity (2214 steps + equivalents, p = 0.001)) from 0 to 3 months was found in the total group, as well as in the outpatient (1816 steps, 2616 steps + equivalents, both p = 0.007) and PR (758 steps, 2151 steps + equivalents, both p = 0.03) subgroups. From 0 to 15 months no differences were found in physical activity. However, when patients with baseline physical activity>10,000 steps per day (n = 8), who are already sufficiently active, were excluded, a significant long-term effect of the counselling programme on daily physical activity existed in the total group (p = 0.02). Differences in exercise capacity and quality of life were found only from 0 to 3 months, in the outpatient subgroup.ConclusionOur PA counselling programme effectively enhances PA level in COPD patients after three months. Sedentary patients at baseline still benefit after 15 months.ClinicalTrials.gov: registration number NCT00614796

    Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia

    Get PDF
    BACKGROUND: Sensitization of leukemic cells with hematopoietic growth factors may enhance the cytotoxicity of chemotherapy in acute myeloid leukemia (AML). METHODS: In a multicenter randomized trial, we assigned patients (age range, 18 to 60 years) with newly diagnosed AML to receive cytarabine plus idarubicin (cycle 1) and cytarabine plus amsacrin (cycle 2) with granulocyte colony-stimulating factor (G-CSF) (321 patients) or without G-CSF (319). G-CSF was given concurrently with chemotherapy only. Idarubicin and amsacrin were given at the end of a cycle to allow the cell-cycle-dependent cytotoxicity of cytarabine in the context of G-CSF to have a greater effect. The effect of G-CSF on disease-free survival was assessed in all patients and in cytogenetically distinct prognostic subgroups. RESULTS: After induction chemotherapy, the rates of response were not significantly different in the two groups. After a median follow-up of 55 months, patients in complete remission after induction chemotherapy plus G-CSF had a higher rate of disease-free survival than patients who did not receive G-CSF (42 percent vs. 33 percent at four years, P=0.02), owing to a reduced probability of relapse (relative risk, 0.77; 95 percent confidence interval, 0.61 to 0.99; P=0.04). G-CSF did not significantly improve overall survival (P=0.16). Although G-CSF did not improve the outcome in the subgroup with an unfavorable prognosis, the 72 percent of patients with standard-risk AML benefited from G-CSF therapy (overall survival at four years, 45 percent, as compared with 35 percent in the group that did not receive G-CSF [relative risk of death, 0.75; 95 percent confidence interval, 0.59 to 0.95; P=0.02]; disease-free survival, 45 percent vs. 33 percent [relative risk, 0.70]; 95 percent confidence interval, 0.55 to 0.90; P=0.006). CONCLUSIONS: Sensitization of leukemic cells with growth factors is a clinically applicable means of enhancing the efficacy of chemotherapy in patients with AML

    Highly contractile 3D tissue engineered skeletal muscles from human iPSCs reveal similarities with primary myoblast-derived tissues

    Get PDF
    Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.</p

    Alternative Magnesium Sulfate Dosing Regimens for Women With Preeclampsia: A Population Pharmacokinetic Exposure-Response Modeling and Simulation Study

    Get PDF
    Magnesium sulfate is the anticonvulsant of choice for eclampsia prophylaxis and treatment; however, the recommended dosing regimens are costly and cumbersome and can be administered only by skilled health professionals. The objectives of this study were to develop a robust exposure-response model for the relationship between serum magnesium exposure and eclampsia using data from large studies of women with preeclampsia who received magnesium sulfate, and to predict eclampsia probabilities for standard and alternative (shorter treatment duration and/or fewer intramuscular injections) regimens. Exposure-response modeling and simulation were applied to existing data. A total of 10 280 women with preeclampsia who received magnesium sulfate or placebo were evaluated. An existing population pharmacokinetic model was used to estimate individual serum magnesium exposure. Logistic regression was applied to quantify the serum magnesium area under the curve-eclampsia rate relationship. Our exposure-response model-estimated eclampsia rates were comparable to observed rates. Several alternative regimens predicted magnesium peak concentration < 3.5 mmol/L (empiric safety threshold) and eclampsia rate ≤ 0.7% (observed response threshold), including 4 g intravenously plus 10 g intramuscularly followed by either 8 g intramuscularly every 6 hours × 3 doses or 10 g intramuscularly every 8 hours × 2 doses and 10 g intramuscularly every 8 hours × 3 doses. Several alternative magnesium sulfate regimens with comparable model-predicted efficacy and safety were identified that merit evaluation in confirmatory clinical trials

    Macrocyclization of enzyme-based supramolecular polymers

    Get PDF
    AB type monomers for supramolecular polymers have been developed based on the strong and reversible noncovalent interaction between ribonuclease S-peptide (A) and S-protein (B), resulting in an active enzyme complex as the linking unit. Two AB-type protein constructs are synthesized differing in the length of the flexible oligo(ethylene glycol) spacer separating the two end groups. Using an experimental setup where size exclusion chromatography is directly coupled to Q-TOF mass spectrometry, we have analyzed the self-assembled architectures as a function of concentration. The theory of macrocyclization under thermodynamic control is used to quantitatively analyze the experimental data. Using this theory, we show that AB-type monomers linked by flexible linkers grow reversibly via ring-chain competition. Inherently the formation of linear polymeric assemblies is beyond the capability of these types of building blocks due to concentration limits of proteins. The results therefore contribute to the general understanding of supramolecular polymerization with biological building blocks and demonstrate design requirements for monomers if linear polymerization is desired

    Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species

    Get PDF
    Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts

    Get PDF
    Infrared thermography was used to study damage developing in woven fabrics. Two different experiments were performed, a ±45° tensile test and a rail shear test. These two different types of tests show different damage scenarios, even if the shear stress/strain curves are similar. The ±45° tension test shows matrix hardening and matrix cracking whereas the rail shear test shows only matrix hardening. The infrared thermography was used to perform an energy balance, which enabled the visualization of the portion of dissipated energy caused by matrix cracking. The results showed that when the resin is subjected to pure shear, a larger amount of energy is stored by the material, whereas when the resin is subjected to hydrostatic pressure, the main part of mechanical energy is dissipated as heat

    Influence of Anesthesia and Clinical Variables on the Firing Rate, Coefficient of Variation and Multi-Unit Activity of the Subthalamic Nucleus in Patients with Parkinson's Disease

    Get PDF
    BACKGROUND: Microelectrode recordings (MER) are used to optimize lead placement during subthalamic nucleus deep brain stimulation (STN-DBS). To obtain reliable MER, surgery is usually performed while patients are awake. Procedural sedation and analgesia (PSA) is often desirable to improve patient comfort, anxiolysis and pain relief. The effect of these agents on MER are largely unknown. The objective of this study was to determine the effects of commonly used PSA agents, dexmedetomidine, clonidine and remifentanil and patient characteristics on MER during DBS surgery. METHODS: Data from 78 patients with Parkinson's disease (PD) who underwent STN-DBS surgery were retrospectively reviewed. The procedures were performed under local anesthesia or under PSA with dexmedetomidine, clonidine or remifentanil. In total, 4082 sites with multi-unit activity (MUA) and 588 with single units were acquired. Single unit firing rates and coefficient of variation (CV), and MUA total power were compared between patient groups. RESULTS: We observed a significant reduction in MUA, an increase of the CV and a trend for reduced firing rate by dexmedetomidine. The effect of dexmedetomidine was dose-dependent for all measures. Remifentanil had no effect on the firing rate but was associated with a significant increase in CV and a decrease in MUA. Clonidine showed no significant effect on firing rate, CV or MUA. In addition to anesthetic effects, MUA and CV were also influenced by patient-dependent variables. CONCLUSION: Our results showed that PSA influenced neuronal properties in the STN and the dexmedetomidine (DEX) effect was dose-dependent. In addition, patient-dependent characteristics also influenced MER
    corecore