58 research outputs found

    Short Term Synaptic Depression Imposes a Frequency Dependent Filter on Synaptic Information Transfer

    Get PDF
    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse

    NASH limits anti-tumour surveillance in immunotherapy-treated HCC

    Get PDF
    Hepatocellular carcinoma (HCC) can have viral or non-viral causes(1-5). Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need(6,7). Here we report the progressive accumulation of exhausted, unconventionally activated CD8(+)PD1(+) T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8(+)PD1(+) T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH-HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8(+)PD1(+)CXCR6(+), TOX+, and TNF+ T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8(+) T cells or TNF neutralization, suggesting that CD8(+) T cells help to induce NASH-HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8(+)PD1(+) T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH-HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment

    Evidence that the same structural gene encodes testicular and adrenal 3β-hydroxysteroid dehydrogenase-isomerase

    Full text link
    Thermostability of 3β-hydroxysteroid dehydrogenase-isomerase (3βHSD) activity was examined in testes and adrenal glands from several inbred lines and feral mice. A thermolabile varant of 3βHSD was detected in the feral Brno mice. The thermostability ( t 1/2 ) of 3βHSD was approximately 7 min for both testes and adrenal glands from C57BL/6J mice, compared with 4 min for both tissues from Brno mice. Comparison of testicular and adrenal 3βHSD thermostability in six kinds of mice indicated that the t 1/2 of 3βHSD was correlated in the two tissues and could be classified into two distinct types, thermolabile and thermostable. In contrast, quantitative variants in 3βHSD activity were not correlated in the two tissues. These data are consistent with the hypothesis that testicular and adrenal 3βHSD is encoded by the same structural gene but that expression of 3βHSD activity is independently controlled in testes and adrenal glands.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44154/1/10528_2004_Article_BF00498961.pd

    Choice of the initial antiretroviral treatment for HIV-positive individuals in the era of integrase inhibitors

    Get PDF
    BACKGROUND: We aimed to describe the most frequently prescribed initial antiretroviral therapy (ART) regimens in recent years in HIV-positive persons in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) and to investigate factors associated with the choice of each regimen. METHODS: We analyzed initial ART regimens prescribed in adults participating in CoRIS from 2014 to 2017. Only regimens prescribed in >5% of patients were considered. We used multivariable multinomial regression to estimate Relative Risk Ratios (RRRs) for the association between sociodemographic and clinical characteristics and the choice of the initial regimen. RESULTS: Among 2874 participants, abacavir(ABC)/lamivudine(3TC)/dolutegavir(DTG) was the most frequently prescribed regimen (32.1%), followed by tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC)/elvitegravir(EVG)/cobicistat(COBI) (14.9%), TDF/FTC/rilpivirine (RPV) (14.0%), tenofovir alafenamide (TAF)/FTC/EVG/COBI (13.7%), TDF/FTC+DTG (10.0%), TDF/FTC+darunavir/ritonavir or darunavir/cobicistat (bDRV) (9.8%) and TDF/FTC+raltegravir (RAL) (5.6%). Compared with ABC/3TC/DTG, starting TDF/FTC/RPV was less likely in patients with CD4100.000 copies/mL. TDF/FTC+DTG was more frequent in those with CD4100.000 copies/mL. TDF/FTC+RAL and TDF/FTC+bDRV were also more frequent among patients with CD4<200 cells//muL and with transmission categories other than men who have sex with men. Compared with ABC/3TC/DTG, the prescription of other initial ART regimens decreased from 2014-2015 to 2016-2017 with the exception of TDF/FTC+DTG. Differences in the choice of the initial ART regimen were observed by hospitals' location. CONCLUSIONS: The choice of initial ART regimens is consistent with Spanish guidelines' recommendations, but is also clearly influenced by physician's perception based on patient's clinical and sociodemographic variables and by the prescribing hospital location

    Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary auditory cortex (AI) neurons show qualitatively distinct response features to successive acoustic signals depending on the inter-stimulus intervals (ISI). Such ISI-dependent AI responses are believed to underlie, at least partially, categorical perception of click trains (elemental vs. fused quality) and stop consonant-vowel syllables (eg.,/da/-/ta/continuum).</p> <p>Methods</p> <p>Single unit recordings were conducted on 116 AI neurons in awake cats. Rectangular clicks were presented either alone (single click paradigm) or in a train fashion with variable ISI (2–480 ms) (click-train paradigm). Response features of AI neurons were quantified as a function of ISI: one measure was related to the degree of stimulus locking (temporal modulation transfer function [tMTF]) and another measure was based on firing rate (rate modulation transfer function [rMTF]). An additional modeling study was performed to gain insight into neurophysiological bases of the observed responses.</p> <p>Results</p> <p>In the click-train paradigm, the majority of the AI neurons ("synchronization type"; <it>n </it>= 72) showed stimulus-locking responses at long ISIs. The shorter cutoff ISI for stimulus-locking responses was on average ~30 ms and was level tolerant in accordance with the perceptual boundary of click trains and of consonant-vowel syllables. The shape of tMTF of those neurons was either band-pass or low-pass. The single click paradigm revealed, at maximum, four response periods in the following order: 1st excitation, 1st suppression, 2nd excitation then 2nd suppression. The 1st excitation and 1st suppression was found exclusively in the synchronization type, implying that the temporal interplay between excitation and suppression underlies stimulus-locking responses. Among these neurons, those showing the 2nd suppression had band-pass tMTF whereas those with low-pass tMTF never showed the 2nd suppression, implying that tMTF shape is mediated through the 2nd suppression. The recovery time course of excitability suggested the involvement of short-term plasticity. The observed phenomena were well captured by a single cell model which incorporated AMPA, GABA<sub>A</sub>, NMDA and GABA<sub>B </sub>receptors as well as short-term plasticity of thalamocortical synaptic connections.</p> <p>Conclusion</p> <p>Overall, it was suggested that ISI-dependent responses of the majority of AI neurons are configured through the temporal interplay of excitation and suppression (inhibition) along with short-term plasticity.</p

    A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map

    Get PDF
    Mapping resistance genes is usually accomplished by phenotyping a segregating population for the resistance trait and genotyping it using a large number of markers. Most resistance genes are of the NBS-LRR type, of which an increasing number is sequenced. These genes and their analogs (RGAs) are often organized in clusters. Clusters tend to be rather homogenous, viz. containing genes that show high sequence similarity with each other. From many of these clusters the map position is known. In this study we present and test a novel method to quickly identify to which cluster a new resistance gene belongs and to produce markers that can be used for introgression breeding. We used NBS profiling to identify markers in bulked DNA samples prepared from resistant and susceptible genotypes of small segregating populations. Markers co-segregating with resistance can be tested on individual plants and directly used for breeding. To identify the resistance gene cluster a gene belongs to, the fragments were sequenced and the sequences analyzed using bioinformatics tools. Putative map positions arising from this analysis were validated using markers mapped in the segregating population. The versatility of the approach is demonstrated with a number of populations derived from wild Solanum species segregating for P. infestans resistance. Newly identified P. infestans resistance genes originating from S. verrucosum, S. schenckii, and S. capsicibaccatum could be mapped to potato chromosomes 6, 4, and 11, respectively
    corecore