27,658 research outputs found

    Optimal network topologies for information transmission in active networks

    Get PDF
    This work clarifies the relation between network circuit (topology) and behavior (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how to determine a network topology that is optimal for information transmission. By optimal, we mean that the network is able to transmit a large amount of information, it possesses a large number of communication channels, and it is robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.Comment: 20 pages, 12 figure

    The Role of Fermions in Bubble Nucleation

    Get PDF
    We present a study of the role of fermions in the decay of metastable states of a scalar field via bubble nucleation. We analyze both one and three-dimensional systems by using a gradient expansion for the calculation of the fermionic determinant. The results of the one-dimensional case are compared to the exact results of previous work.Comment: 15 pages, revtex, 9 figure

    Holonomy Transformation in the FRW Metric

    Get PDF
    In this work we investigate loop variables in Friedman-Robertson-Walker spacetime. We analyze the parallel transport of vectors and spinors in several paths in this spacetime in order to classify its global properties. The band holonomy invariance is analysed in this background.Comment: 8 page

    Weak measurement og the composite Goo-Haenchen shift in the critical region

    Full text link
    By using a weak measurement technique, we investigated the interplay between the angular and lateral Goos-Haenchen shift of a focused He-Ne laser beam for incidence near the critical angle. We verified that this interplay dramatically affects the composite Goos-Haenchen shift of the propagated beam. The experimental results confirm theoretical predictions that recently appeared in the literature.Comment: 10 pages, 3 figure

    Experimental evidence of laser power oscillations induced by the relative Fresnel (Goos-Haenchen) phase

    Full text link
    The amplification of the relative Fresnel (Goos-Haenchen) phase by an appropriate number of total internal reflections and the choice of favorable incidence angles allow to observe full oscillations in the power of a DPSS laser transmitted through sequential BK7 blocks. The experimental results confirm the theoretical predictions. The optical apparatus used in this letter can be seen as a new type of two-phase ellipsometric system where the phase of the complex refractive index is replaced by the relative Fresnel (Goos-Haenchen) phase.Comment: 7 pages, 3 figures, 1 tabl

    Deformed Gaussian Orthogonal Ensemble description of Small-World networks

    Full text link
    The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, Random Matrix Theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of Small World (SW) networks using an extension of the Gaussian Orthogonal Ensemble. This RMT ensemble, coined the Deformed Gaussian Orthogonal Ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics till certain range of eigenvalues correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.Comment: Replaced with the revised version, accepted for publication in Phys. Rev.
    • 

    corecore