39 research outputs found

    The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation

    Get PDF
    Polo-like kinase-1 (PLK1) plays a major role in driving mitotic events, including centrosome disjunction and separation, and is frequently over-expressed in human cancers. PLK1 inhibition is a promising therapeutic strategy and works by arresting cells in mitosis due to monopolar spindles. The p53 tumour suppressor protein is a short-lived transcription factor that can inhibit the growth, or stimulate the death, of developing cancer cells. Curiously, although p53 normally acts in an anti-cancer capacity, it can offer significant protection against inhibitors of PLK1, but the events underpinning this effect are not known. Here, we show that functional p53 reduces the sensitivity to PLK1 inhibitors by permitting centrosome separation to occur, allowing cells to traverse mitosis and re-enter cycle with a normal complement of 2N chromosomes. Protection entails the activation of p53 through the DNA damage-response enzymes, ATM and ATR, and requires the phosphorylation of p53 at the key regulatory site, Ser15. These data highlight a previously unrecognised link between p53, PLK1 and centrosome separation that has therapeutic implications for the use of PLK1 inhibitors in the clinic

    Photochemical dihydrogen production using an analogue of the active site of [NiFe] hydrogenase

    Get PDF
    The photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by the reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the 3MLCT excited state of the photosensitiser by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS•−, and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a•− and 1b•−) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a•− was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a•− is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b•− two of the carbonyl groups bridge the Fe centres, consistent with the peak observed at 1714 cm−1 in the FTIR spectrum for 1b•− in CH3CN, assigned to a ν(CO) stretching vibration. The formation of 1a•− and 1b•− and the production of H2 was studied in CH3CN, DMF and CH2Cl2. Although the more catalytically active species (1a•− or 1b•−) could not be determined, photocatalysis was observed only in CH3CN and DMF

    High-Content, High-Throughput Analysis of Cell Cycle Perturbations Induced by the HSP90 Inhibitor XL888

    Get PDF
    BACKGROUND: Many proteins that are dysregulated or mutated in cancer cells rely on the molecular chaperone HSP90 for their proper folding and activity, which has led to considerable interest in HSP90 as a cancer drug target. The diverse array of HSP90 client proteins encompasses oncogenic drivers, cell cycle components, and a variety of regulatory factors, so inhibition of HSP90 perturbs multiple cellular processes, including mitogenic signaling and cell cycle control. Although many reports have investigated HSP90 inhibition in the context of the cell cycle, no large-scale studies have examined potential correlations between cell genotype and the cell cycle phenotypes of HSP90 inhibition. METHODOLOGY/PRINCIPAL FINDINGS: To address this question, we developed a novel high-content, high-throughput cell cycle assay and profiled the effects of two distinct small molecule HSP90 inhibitors (XL888 and 17-AAG [17-allylamino-17-demethoxygeldanamycin]) in a large, genetically diverse panel of cancer cell lines. The cell cycle phenotypes of both inhibitors were strikingly similar and fell into three classes: accumulation in M-phase, G2-phase, or G1-phase. Accumulation in M-phase was the most prominent phenotype and notably, was also correlated with TP53 mutant status. We additionally observed unexpected complexity in the response of the cell cycle-associated client PLK1 to HSP90 inhibition, and we suggest that inhibitor-induced PLK1 depletion may contribute to the striking metaphase arrest phenotype seen in many of the M-arrested cell lines. CONCLUSIONS/SIGNIFICANCE: Our analysis of the cell cycle phenotypes induced by HSP90 inhibition in 25 cancer cell lines revealed that the phenotypic response was highly dependent on cellular genotype as well as on the concentration of HSP90 inhibitor and the time of treatment. M-phase arrest correlated with the presence of TP53 mutations, while G2 or G1 arrest was more commonly seen in cells bearing wt TP53. We draw upon previous literature to suggest an integrated model that accounts for these varying observations

    The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex

    Get PDF
    Abstract Opitz BBB/G syndrome (OS) is a heterogenous malformation syndrome mainly characterised by hypertelorism and hypospadias. In addition, patients may present with several other defects of the ventral midline such as cleft lip and palate and congenital heart defects. The syndrome-causing gene encodes the X-linked E3 ubiquitin ligase MID1 that mediates ubiquitin-specific modification and degradation of the catalytic subunit of the translation regulator protein phosphatase 2A (PP2A). Here, we show that the MID1 protein also associates with elongation factor 1α (EF-1α) and several other proteins involved in mRNA transport and translation, including RACK1, Annexin A2, Nucleophosmin and proteins of the small ribosomal subunits. Mutant MID1 proteins as found in OS patients lose the ability to interact with EF-1α. The composition of the MID1 protein complex was determined by several independent methods: (1) yeast two-hybrid screening and (2) immunofluorescence, (3) a biochemical approach involving affinity purification of the complex, (4) co-fractionation in a microtubule assembly assay and (5) immunoprecipitation. Moreover, we show that the cytoskeleton-bound MID1/translation factor complex specifically associates with G- and U-rich RNAs and incorporates MID1 mRNA, thus forming a microtubule-associated ribonucleoprotein (RNP) complex. Our data suggest a novel function of the OS gene product in directing translational control to the cytoskeleton. The dysfunction of this mechanism would lead to malfunction of microtubule-associated protein translation and to the development of OS. Electronic supplementary material The online version of this article (doi:10.1007/s00439-007-0456-6) contains supplementary material, which is available to authorized users
    corecore