200 research outputs found

    Storage of phase-coded patterns via STDP in fully-connected and sparse network: a study of the network capacity

    Get PDF
    We study the storage and retrieval of phase-coded patterns as stable dynamical attractors in recurrent neural networks, for both an analog and a integrate-and-fire spiking model. The synaptic strength is determined by a learning rule based on spike-time-dependent plasticity, with an asymmetric time window depending on the relative timing between pre- and post-synaptic activity. We store multiple patterns and study the network capacity. For the analog model, we find that the network capacity scales linearly with the network size, and that both capacity and the oscillation frequency of the retrieval state depend on the asymmetry of the learning time window. In addition to fully-connected networks, we study sparse networks, where each neuron is connected only to a small number z << N of other neurons. Connections can be short range, between neighboring neurons placed on a regular lattice, or long range, between randomly chosen pairs of neurons. We find that a small fraction of long range connections is able to amplify the capacity of the network. This imply that a small-world-network topology is optimal, as a compromise between the cost of long range connections and the capacity increase. Also in the spiking integrate and fire model the crucial result of storing and retrieval of multiple phase-coded patterns is observed. The capacity of the fully-connected spiking network is investigated, together with the relation between oscillation frequency of retrieval state and window asymmetry

    Neural Avalanches at the Critical Point between Replay and Non-Replay of Spatiotemporal Patterns

    Get PDF
    We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns

    Scaling and universality in glass transition

    Get PDF
    Kinetic facilitated models and the Mode Coupling Theory (MCT) model B are within those systems known to exhibit a discontinuous dynamical transition with a two step relaxation. We consider a general scaling approach, within mean field theory, for such systems by considering the behavior of the density correlator and the dynamical susceptibility -^2. Focusing on the Fredrickson and Andersen (FA) facilitated spin model on the Bethe lattice, we extend a cluster approach that was previously developed for continuous glass transitions by Arenzon et al (Phys. Rev. E 90, 020301(R) (2014)) to describe the decay to the plateau, and consider a damage spreading mechanism to describe the departure from the plateau. We predict scaling laws, which relate dynamical exponents to the static exponents of mean field bootstrap percolation. The dynamical behavior and the scaling laws for both density correlator and dynamical susceptibility coincide with those predicted by MCT. These results explain the origin of scaling laws and the universal behavior associated with the glass transition in mean field, which is characterized by the divergence of the static length of the bootstrap percolation model with an upper critical dimension d_c=8.Comment: 16 pages, 9 figure

    Disordered jammed packings of frictionless spheres

    Full text link
    At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct numerical construction of disordered jammed states with a volume fraction varying between two limits, 0.6360.636 and 0.6460.646. We identify these limits with the random loose packing volume fraction \rl and the random close packing volume fraction \rc of frictionless spheres, respectively

    Crossover properties from random percolation to frustrated percolation

    Full text link
    We investigate the crossover properties of the frustrated percolation model on a two-dimensional square lattice, with asymmetric distribution of ferromagnetic and antiferromagnetic interactions. We determine the critical exponents nu, gamma and beta of the percolation transition of the model, for various values of the density of antiferromagnetic interactions pi in the range 0<pi<0.5. Our data are consistent with the existence of a crossover from random percolation behavior for pi=0, to frustrated percolation behavior, characterized by the critical exponents of the ferromagnetic 1/2-state Potts model, as soon as pi>0.Comment: 5 pages, 7 figs, RevTe

    Cage-jump motion reveals universal dynamics and non-universal structural features in glass forming liquids

    Get PDF
    The sluggish and heterogeneous dynamics of glass forming liquids is frequently associated to the transient coexistence of two phases of particles, respectively with an high and low mobility. In the absence of a dynamical order parameter that acquires a transient bimodal shape, these phases are commonly identified empirically, which makes difficult investigating their relation with the structural properties of the system. Here we show that the distribution of single particle diffusivities can be accessed within a Continuous Time Random Walk description of the intermittent motion, and that this distribution acquires a transient bimodal shape in the deeply supercooled regime, thus allowing for a clear identification of the two coexisting phase. In a simple two-dimensional glass forming model, the dynamic phase coexistence is accompanied by a striking structural counterpart: the distribution of the crystalline-like order parameter becomes also bimodal on cooling, with increasing overlap between ordered and immobile particles. This simple structural signature is absent in other models, such as the three-dimesional Kob-Andersen Lennard-Jones mixture, where more sophisticated order parameters might be relevant. In this perspective, the identification of the two dynamical coexisting phases opens the way to deeper investigations of structure-dynamics correlations.Comment: Published in the J. Stat. Mech. Special Issue "The Role of Structure in Glassy and Jammed Systems

    Dynamical arrest: interplay of the glass and of the gel transitions

    Get PDF
    The structural arrest of a polymeric suspension might be driven by an increase of the cross--linker concentration, that drives the gel transition, as well as by an increase of the polymer density, that induces a glass transition. These dynamical continuous (gel) and discontinuous (glass) transitions might interfere, since the glass transition might occur within the gel phase, and the gel transition might be induced in a polymer suspension with glassy features. Here we study the interplay of these transitions by investigating via event--driven molecular dynamics simulation the relaxation dynamics of a polymeric suspension as a function of the cross--linker concentration and the monomer volume fraction. We show that the slow dynamics within the gel phase is characterized by a long sub-diffusive regime, which is due both to the crowding as well as to the presence of a percolating cluster. In this regime, the transition of structural arrest is found to occur either along the gel or along the glass line, depending on the length scale at which the dynamics is probed. Where the two line meet there is no apparent sign of higher order dynamical singularity. Logarithmic behavior typical of A3A_{3} singularity appear inside the gel phase along the glass transition line. These findings seem to be related to the results of the mode coupling theory for the F13F_{13} schematic model

    Dynamical Correlation Length and Relaxation Processes in a Glass Former

    Full text link
    We investigate the relaxation process and the dynamical heterogeneities of the kinetically constrained Kob--Anderson lattice glass model, and show that these are characterized by different timescales. The dynamics is well described within the diffusing defect paradigm, which suggest to relate the relaxation process to a reverse--percolation transition. This allows for a geometrical interpretation of the relaxation process, and of the different timescales

    Recurrence of spatio-temporal patterns of spikes and neural avalanches at the critical point of a non-equilibrium phase transition

    Get PDF
    Recently, many experimental results have supported the idea that the brain operates near a critical point [1-5], as reflected by the power laws of avalanche size distributions and maximization of fluctuations. Several models have been proposed as explanations for the power law distributions that emerge in spontaneous cortical activity [6,5]. Models based on branching processes and on self-organized criticality are the most relevant. However, there are additional features of neuronal avalanches that are not captured in these models, such as the stable recurrence of particular spatiotemporal patterns and the conditions under which these precise and diverse patterns can be retrieved [4]. Indeed, neuronal avalanches are highly repeatable and can be clustered into statistically significant families of activity patterns that satisfy several requirements of a memory substrate. In many areas of the brain having different brain functionality, repeatable precise spatiotemporal patterns of spikes seem to play a crucial role in the coding and storage of information. Many in vitro and in vivo studies have demonstrated that cortical spontaneous activity occurs in precise spatiotemporal patterns, which often reflect the activity produced by external or sensory inputs. The temporally structured replay of spatiotemporal patterns has been observed to occur, both in the cortex and hippocampus, during sleep and in the awake state, and it has been hypothesized that this replay may subserve memory consolidation. Previous studies have separately addressed the topics of phase-coded memory storage and neuronal avalanches, but our work is the first to show how these ideas converge in a single cortical model. We study a network of leaky integrate- and-fire (LIF) neurons, whose synaptic connections are designed with a rule based on spike-timing dependent plasticity (STDP). The network works as an associative memory of phase-coded spatiotemporal patterns, whose storage capacity has been studied in [7]. In this paper, we study the spontaneous dynamics when the excitability of the model is tuned to be at the critical point of a phase transition, between the successful persistent replay and non-replay of encoded patterns. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain [5]). Notably, in this critical region, the avalanche size and duration distributions follow power laws

    Role of topology in the spontaneous cortical activity

    Get PDF
    Scarpetta et al. BMC Neuroscience 2015, 16(Suppl 1):P6 http://www.biomedcentral.com/1471-2202/16/S1/P
    • …
    corecore