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Dynamical arrest: interplay of glass and gel
transitions

Nagi Khalil,*a Antonio de Candia,bcd Annalisa Fierro,c Massimo Pica Ciamarrace

and Antonio Coniglioc

The structural arrest of a polymeric suspension might be driven by an increase of the cross-linker

concentration, which drives the gel transition, as well as by an increase of the polymer density, which

induces a glass transition. These dynamical continuous (gel) and discontinuous (glass) transitions might

interfere, since the glass transition might occur within the gel phase, and the gel transition might be

induced in a polymer suspension with glassy features. Here we study the interplay of these transitions by

investigating via event-driven molecular dynamics simulation the relaxation dynamics of a polymeric

suspension as a function of the cross-linker concentration and the monomer volume fraction. We show

that the slow dynamics within the gel phase is characterized by a long sub-diffusive regime, which is due

both to the crowding as well as to the presence of a percolating cluster. In this regime, the transition of

structural arrest is found to occur either along the gel or along the glass line, depending on the length

scale at which the dynamics is probed. Where the two lines meet there is no apparent sign of higher

order dynamical singularity. Logarithmic behavior typical of A3 singularity appears inside the gel phase

along the glass transition line. These findings seem to be related to the results of the mode coupling

theory for the F13 schematic model.
1 Introduction

A polymeric suspension might behave as a hard sphere system,
when no cross-linkers are added to it, as its dynamics slows
down as the concentration increases. In this case, a transition of
structural arrest, the glass transition, occurs when the volume
fraction f overcomes a critical threshold, fglass. This transition
marks the arrest of the dynamics at all relevant length scales, for
wavevectors ranging from kmin¼ 2p/L to kmax¼ 2p/s, with L and
s sizes of the system and of the particles. The glass transition is
a discontinuous dynamical phase transition because its order
parameter, known as non-ergodicity parameter and dened as
the innite time limit of relaxation functions, is zero below the
transition but acquires a nite value at the transition. Polymeric
suspensions may also undergo a different kind of structural
arrest transition, the gel transition. This occurs at xed volume
fraction on increasing the cross-linker concentration, which is
related to the probability that two close monomers are perma-
nently bonded. This concentration can be tuned, for instance,
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by radiation as in light induced polymerization processes (e.g.,
dental lling paste) or by heat (e.g., cooking). On increasing the
bonding probability, one drives the system across a gel transi-
tion, where a spanning cluster of connected monomers
emerges. This leads to a gel transition line fgel(p) in the p–f
plane. This structural transition also corresponds to a dynam-
ical arrest transition, as the dynamics becomes frozen on the
smallest wavevector kmin making the spanning cluster unable to
diffuse. Contrary to the glass transition, this is a continuous
transition, as the order parameter continuously increases as
one enters the gel phase on increasing p or f.

The interference of different transitions of dynamical arrest
has been previously investigated, via mode coupling theory, in
systems of particles interacting with a hard-core repulsion
competing with a very short range attraction. These systems
show an attractive and a repulsive glass transition, both of them
discontinuous, and mode coupling theory predicts that their
interference leads to an A3 high order singularity characterized
by logarithmic decay of correlation functions.1–3 These predic-
tions were veried in different colloidal systems,4–9 both
experimentally and numerically. Similar ndings were also
observed in ref. 10, where the dynamics of a physical gel was
numerically studied at high densities where gelation and glass
transition interfere.

In this paper we study the interference of a continuous and a
discontinuous transition of structural arrest focusing on a
system with permanent bonds where, as illustrated in Fig. 1, the
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Structural arrest diagram as a function of the volume fraction, f,
and of the bonding probability, p, illustrating the interplay of the gel
and the glass transition lines. The gel line is determined via percolative
analysis, after introducing bonds with probability p in an equilibrium
(full symbols) or in an out-of-equilibrium (open symbols) monomer
suspension. The glass line is defined as that where the extrapolated
diffusion coefficient vanishes. Only points up to p ¼ 0.5 and f ¼ 0.54
are shown, where the self Intermediate Scattering Function (sISF)
exhibits logarithmic behavior, whichwe associate with an A3 singularity
as predicted by the F13 mode coupling schematic model (see the text
and Fig. 8). Solid lines are guide to the eye.

Fig. 2 Mean square displacement (left) and sISF (right). Top panel: on
approaching the glass transition at p ¼ 0, with volume fraction from
f ¼ 0.52 to f ¼ 0.59 (from left to right, the highest volume fraction
being not at equilibrium). Bottom panel: on entering the gel phase at
p ¼ 0.3 (fgel z 0.4), with volume fraction from f ¼ 0.4 to f ¼ 0.51
(from left to right).
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gel fgel(p) and the glass transition line fglass(p) intersect. We
address some questions raised by the presence of these two
transition lines. First, we note that the gel transition corre-
sponds to structural arrest occurring at the largest (kmin) scale,
while all scales, including the smallest one (kmax), are relevant in
the structural arrest corresponding to the glass transition.
Therefore, we consider the length scale dependence of the
transition of structural arrest. Second, we note that the glass
transition line enters into the gel phase at a point where both
continuous and discontinuous transitions occur. Hence we
expect that the model system studied here might have some
analogies with the mode coupling theory for the schematic F13
model,2 which gives two arrested lines: a continuous transition,
which meets a discontinuous one. This discontinuous transi-
tion ends on a high order critical point (A3 singularity) charac-
terized by logarithm decay1–3 of the relaxation functions.
Topologically the phase diagram is similar to the one found
here (Fig. 1). Consistent with mode coupling theory, we nd
logarithmic behavior at a point well in the gel phase along the
glass line.

2 Numerical model

We perform event drivenmolecular dynamics simulations11,12 of
a 50 : 50 binary mixture of N ¼ 103 hard spheres (monomers) of
mass m and diameters s and 1.4s, in a box of size L under
periodic boundary conditions. The chosen size ratio andmasses
are known to effectively prevent crystallization.13–16 The volume
fraction f ¼ Nn/L3, where v is the average particle volume, is
tuned by changing the size L of the box. The mass m, the
diameter s of the smaller particles, and the temperature T x
our mass, length and energy scales, while the time unit is
This journal is © The Royal Society of Chemistry 2014
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=T

p
. Aer thermal equilibration at the desired volume

fraction, permanent bonds are introduced with probability p
between any pair of particles separated by less than 1.5s. A bond
corresponds to an innite square well potential, extending from
s to 1.5s. The procedure we use to insert the bonds mimics a
light-induced polymerization process, as the number of bonds
depends on both p and f.

Using the percolation approach, we identify the gel phase as
the state in which a percolating cluster is present,17,18 and the
gelation transition as the percolation line. A standard nite-size
scaling analysis of the mean cluster size19 is applied to identify
the percolation line (circles in Fig. 1). The gel transition occurs
at a critical bond probability pgel(f) decreasing with f.
3 Standard glass and gel behaviours

Since we are interested in the interplay of the gel and the glass
transition lines, we start by shortly reviewing the main features
of the slowing down of the dynamics when these transitions do
not interfere. First, we consider the transition at zero bonding
probability, where our system reduces to a hard sphere
suspension and undergoes a glass transition as the volume
fraction increases. This crowding induced dynamical transition
is characterized by well known signatures in the mean square
displacement, r2(t), and in the self intermediate scattering
function (sISF), Fs(k, t), dened respectively by

�
r2ðtÞ� ¼ 2

N

XN=2

i¼1

ri
2ðtÞ; (1)

and

Fsðk; tÞ ¼ 2

N

XN=2

i¼1

eikðriðtÞ�rið0ÞÞ; (2)

where the sums extend only to the larger particles. These are
reviewed in the top row of Fig. 2. At high densities, particles
Soft Matter, 2014, 10, 4800–4805 | 4801
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Fig. 3 Mean square displacement in the gel phase, for p ¼ 0.3 and f

from 0.42 to 0.56 (from top to bottom). In the inset, the subdiffusive
exponent q ¼ d log r2(t)/d log t, as function of time for p ¼ 0.3 and
f ¼ 0.44, 0.48, 0.52, and 0.56.
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rattle in the cages formed by their neighbours before entering
the diffusive regime. Accordingly, the mean square displace-
ment develops a plateau at intermediate times, known as the
Debye–Weller factor. This plateau becomes longer and longer as
the density increases. The diffusivity D ¼ limt/N r2(t)/6t
decreases on increasing f, and vanishes at the glass transition.
We evaluate the diffusivity only at the points of phase space
where the system shows a diffusive regime within the simulated
time. Then, for each value of the bonding probability p, we t
the diffusivity with a power law of the form |f � fglass|

g, and
localize the glass line at the point fglass(p) provided by the t.
Consistent with the behaviour of r2(t), the relaxation function at
large k develops a two step decay, the rst one (b relaxation)
associated with the rattling within the cages, and the second
one (a) with the onset of diffusive motion. The b relaxation
becomes less and less visible as k decreases, and length scales
larger than those associated with the typical vibrational motion
are probed. At the glass transition, only the b relaxation occurs,
and Fs(k, t) asymptotically reaches a nite value, known as non-
ergodicity parameter fk. The glass transition is a discontinuous
phase transition as fk varies discontinuously across the
transition.

We now consider the transition at high p, where on
increasing f the system undergoes a gel transition at a volume
fraction fgel � fglass, so that the two transitions do not inter-
fere. The typical behaviour of r2(t) and Fs(k, t) on approaching
this transition is illustrated in Fig. 2 (bottom row). Due to the
presence of bonds, in the system there are clusters with a
different size s. In the long time limit, each cluster diffuses with
a diffusivity decreasing with s. Accordingly, at long times the
mean square displacement is essentially xed by that of the
fastest clusters, the monomers. Since the volume fraction is
small, the diffusivity of the monomers is only slightly affected
by the volume fraction and has no special features at the gel
transition, above which the monomers diffuse within the
percolating polymer network. In contrast, the largest cluster,
whose mean square displacement is also illustrated in Fig. 2,
slows down on approaching the gel transition, and indeed its
diffusivity vanishes at the transition (where the largest cluster
percolates). We note that, on increasing f, the mean square
displacement of the largest cluster does not reach the diffusive
regime on the time scale of our simulations. Indeed, it has three
contributions: the rst is due to the vibrations of the particles in
the cages formed by nearest neighbors, the second is due to the
uctuations of the cluster structure, and the third is due to the
diffusion of its center of mass. Of these, only the third reaches
the diffusive regime at long times. At the gel transition, when
the diffusion of the center of mass of the largest cluster
vanishes, the mean square displacement remains subdiffusive
at all times, while inside the gel it eventually reaches a plateau.

The behaviour of the sISF critically depends on the length
scale at which it is probed. At small scales, that is for k¼ kmax, it
does not exhibit any particular feature on approaching the gel
transition. On the other hand, at larger length scales, k ¼ kmin,
the relaxation time diverges when f approaches fgel(p). At the
transition, the correlator decays in time as a power law, while
inside the gel asymptotically tends to a plateau, fk, the non-
4802 | Soft Matter, 2014, 10, 4800–4805
ergodicity parameter, that is zero at the transition, and
continuously grows on entering the gel phase. The growth is
continuous as the value of fk is related to the density of the
particles in the percolating cluster, and of the monomers that
are trapped in the percolating cluster. The gel transition
therefore induces a continuous dynamical phase transition.
These properties are found in gelling systems both experi-
mentally20–22 and numerically.23–26 In ref. 27 and 28 deep anal-
ogies of gelation and spin glass transition have been suggested.
4 Dynamics in the gel phase

We now consider how the features of the relaxation process
change as the volume fraction increases, and the system enters
the gel phase and approaches the glass transition. This is
identied as the volume fraction where the extrapolated diffu-
sivity of the monomers vanishes (see Fig. 1). In this section we
focus on a high enough value of bond probability, p ¼ 0.3, for
which fgel z 0.4 is sensibly smaller than fglass z 0.58.
4.1 Mean square displacement

In the gel phase, the mean square displacement at intermediate
times shows a subdiffusive regime, similar to that observed in
the slow dynamics of colloidal particles diffusing in a matrix of
disordered hard sphere obstacles.30 We have characterized it by
investigating the time dependence of the subdiffusive exponent
q, dened by q ¼ d log r2(t)/d log t. Data are illustrated in Fig. 3.
This exponent exhibits a crossover from the ballistic short time
value q ¼ 2 to the diffusive long time value, q ¼ 1. At interme-
diate times, subdiffusive behaviour is found, q < 1, which
becomes prominent as the volume fraction increases. On
further increasing the volume fraction, very peculiar features
appear, as the exponent q might also exhibit two minima. This
behaviour is rationalized considering that the mean square
displacement, eqn (1), has contributions from particles
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 The mean square displacement of the monomers in the gel
(open symbols) is compared with that obtained when the spanning
cluster is frozen (full symbols). Squares: p ¼ 0.2, f ¼ 0.52; circles:
p ¼ 0.25, f ¼ 0.55.
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belonging to different nite clusters of size s, as well as from the
spanning cluster (s ¼ N, in the thermodynamic limit), as

�
r2ðtÞ� ¼ 1

N

X

s

sns
�
rs

2ðtÞ�; (3)

where the sum runs over the cluster size s, hrs2(t)i is the mean
square displacement of clusters of size s, and ns is the number
of clusters with size s. The cluster size distribution ns and the
mean square displacement for different s are illustrated in
Fig. 4, for p ¼ 0.3 and f ¼ 0.54. The gure claries that two
phenomena lead to the subdiffusive behaviour. The rst one is
the crowding induced cage effect typical of glasses, which
involves both particles belonging to nite clusters as well as
particles belonging to the percolating cluster. The second one
only involves the particles of the percolating cluster, whose
mean square displacement reaches a plateau at long times, as
the percolating cluster is unable to diffuse. The coexistence of
these two effects, whose relevant importance is xed by f and p,
leads to the unusual features of the mean square displacement
plotted in Fig. 3.

As we have observed above, the diffusive problem in the gel
phase shares some similarities with the much investigated
problem of single-particle diffusion in a matrix of disordered
hard sphere obstacles,29–31 where single particles are considered
to move in a frozen environment. Conversely, in the present
case, monomers and nite clusters diffuse in a uctuating
environment, as the percolating clusters may vibrate. These
uctuations affect the diffusion of free particles as we see in
Fig. 5, where the mean square displacement obtained in the
actual gel is compared with that obtained by freezing the
percolating cluster. The gure claries that the uctuations of
the percolating cluster strongly inuence the diffusivity of the
particles. For instance, at p ¼ 0.25 and f ¼ 0.55, the system is
completely arrested by freezing the percolating cluster, showing
that the relaxation of the system is completely due to the
Fig. 4 Main panel: mean square displacement averaged over all the
particles, hr2i, over particles belonging to finite clusters of size s ¼ 1, 2,
and 3, and over particles belonging to the percolating clusters, for
p ¼ 0.3 and f ¼ 0.54. Inset: the size distribution of finite clusters for
the same values of p and f. There is also a percolating cluster, with sz
930 particles.

This journal is © The Royal Society of Chemistry 2014
uctuations of the percolating cluster. This result might be
relevant in the biological context where diffusion through gels
act as a ltering process, such as in the case of the mucus of our
respiratory system.32
4.2 Correlation functions

In this section, we describe the relaxation of the system in the
gel phase through the study of the sISF, eqn (2). While by the
standard denition structural arrest is the point where
relaxation time diverges, here we use a different denition
that avoids difficult extrapolations. We dene a particular
length scale k as frozen if the corresponding relaxation
function Fs(k, t) has not decayed below a value x at the time
sarrest h 105, that is our experimentally accessible time.
Therefore, we derive a k and x dependent structural
arrest line farrest(p), dened as the volume fraction at which
Fs(k, sarrest) h x.

Fig. 6 (top panel) illustrates the dependence of farrest on x for
three different values of k, at p ¼ 0.3. The gure claries the
existence of two characteristic values for farrest, fgel z 0.4 and
fglass z 0.58. Indeed, regardless of x, farrest z fgel at small k,
and farrest z fglass at large k. At intermediate values of k, farrest

exhibits a crossover from fgel to fglass as x increases. The decay
of the correlation function at wavevectors kmin < k < kmax is
therefore inuenced by both the gel and the glass transitions.
The bottom panel of Fig. 6 illustrates the same crossover for
different wavevectors, which inuence the value of x at which
the crossover occurs. The glassy time scale affects the initial
decay of the correlation function, and it is thus observed for
large x, while the gel relaxation corresponds to the nal relax-
ation, and it is observed for small x.

Data shown in Fig. 7 further clarify these ndings. As also
found in ref. 10, we can recognize three different relaxation
time scales: sb, due to the rattling of particles in the nearest
neighbour cage, does not diverge at all; sa, due to the opening
of the cage, diverges at the glass transition line; and nally
Soft Matter, 2014, 10, 4800–4805 | 4803
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Fig. 6 We consider the transition of structural arrest to occur when
Fs(k, sarrest) h x, with sarrest h 105. The top panel illustrates the
dependence of farrest on x, for three values of k, and p ¼ 0.3. The
bottom panel is a colour map showing the dependence of farrest on k,
for p ¼ 0.3. The figures clarify that at small k, farrest z fgel, at large k,
farrest z fglass, while at intermediate k, farrest exhibits a crossover
between these two limiting values on increasing x.

Fig. 7 The sISF, Fs(k, t), for k ¼ 3, p¼ 0.3, and f¼ 0.54, larger than fgel

z 0.4. The three relaxation processes are clearly distinguishable.

Fig. 8 The sISF, Fs(k, t), for p¼ 0.5, f¼ 0.52, andwavevector k¼ 1, 2, 3,
4, 5, and 6.28 (from top to bottom). Continuous lines are logarithmic
functions.

Fig. 9 The sISF, Fs(k, t), at different values of p as indicated, moving
along the glass line, for k ¼ kmax (left panel) and for k ¼ 3 (right panel).
The plateaus associated with the gel and the glass are indicated by an
arrow.
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sperc, due to the relaxation of the largest cluster, diverges at
the gel transition line (data plotted in Fig. 7 refer to f > fgel,
then Fs(k, t) does not relax to zero, and reaches at long time a
nite value).
4804 | Soft Matter, 2014, 10, 4800–4805
5 Interference of structural arrest
lines

Here, we consider the interference of the glass and the gel
transitions in a model of a chemical gel, where bonds are
permanent. As we have noticed, the glass transition is a
discontinuous transition and the gel transition is a contin-
uous one. Hence, we expect that the model system studied
here might have some analogies with the mode coupling
theory for the schematic F13 model,2 which gives two arrested
lines: a continuous transition, which meets a discontinuous
one. The model predicts that the discontinuous transition
ends on a high order critical point (A3 singularity), where
the plateau of the two transitions coincides, characterized
by logarithm decay1–3 of the relaxation functions. Topologi-
cally the phase diagram is similar to the one found here
(Fig. 1).
This journal is © The Royal Society of Chemistry 2014
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In our model, due to long relaxation time involved, it is
rather difficult to localize such singularity. However we do nd
evidence of a logarithmic decay in a region inside the gel phase,
close to the glass transition line, as shown in Fig. 8. In order to
appreciate how this logarithmic decay emerges, we follow the
evolution of the sISF on increasing p along the glass line, in the
gel phase. Fig. 9 shows that on increasing p the value of the
plateau associated with cage motion of the particles decreases,
and the plateau becomes shorter. On increasing p we also
observe the value of the plateau associated with the gel transi-
tion to grow, and the time needed to reach it to increase.
Accordingly, the higher order critical point where a logarithm
decay is found seems to be associated with the state where the
two plateaus coincide, in agreement with the A3 singularity of
the F13 model. We stress that the high order singularity may
occur at higher values of p including possibly p ¼ 1. Further
investigation is necessary.

6 Conclusions

The gel and the glass transitions are characterized by different
dynamical signatures, reecting the fact that the gel transition
is a continuous transition marking the arrest of the dynamics
on the largest length scale of the system, while the glass tran-
sition is a discontinuous transition marking the arrest of the
dynamics at all length scales. This makes the investigation of
the interplay of these transitions in polymeric suspensions
interesting, where the transitions are driven by an increase of
the cross-linker concentration and the polymer volume fraction.
Here, we have performed such an investigation, focusing on the
glassy dynamics within the gel phase and on their mutual
interference.

An important open question ahead regards the relevance of
the mode coupling theory for the schematic F13 model2 for these
systems. Our results support this scenario, as we do not only
recover the interference of a continuous and a discontinuous
transition, but also nd a point where the relaxation function
seems to decay logarithmically, which should be associated
with the A3 singularity. However, much work is needed in this
direction, particularly to better localize this high order critical
singularity.
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