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Abstract

The sluggish and heterogeneous dynamics of glass forming liquids is frequently associated to the transient
coexistence of two phases of particles, respectively with an high and low mobility. In the absence of a dynamical
order parameter that acquires a transient bimodal shape, these phases are commonly identified empirically,
which makes difficult investigating their relation with the structural properties of the system. Here we show
that the distribution of single particle diffusivities can be accessed within a Continuous Time Random Walk
description of the intermittent motion, and that this distribution acquires a transient bimodal shape in the
deeply supercooled regime, thus allowing for a clear identification of the two coexisting phase. In a simple
two-dimensional glass forming model, the dynamic phase coexistence is accompanied by a striking structural
counterpart: the distribution of the crystalline-like order parameter becomes also bimodal on cooling, with
increasing overlap between ordered and immobile particles. This simple structural signature is absent in other
models, such as the three-dimesional Kob-Andersen Lennard-Jones mixture, where more sophisticated order
parameter might be relevant. In this perspective, the identification of the two dynamical coexisting phases
opens the way to deeper investigations of structure-dynamics correlations.

Keywords: Slow relaxation and glassy dynamics, Structural glasses (Theory), Dynamical heterogeneities
(Theory).
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1 Introduction

Probably the main paradox of structural glasses is
the apparent mismatch between dynamics and struc-
ture: the dynamics dramatically slows down on cool-
ing, as highlighted by the huge grow of the relaxation
time. By contrast, the structure remains seemingly
unchanged, insomuch as it is not possible to distin-
guish a glass from a simple liquids simply focussing
on pair correlation functions, such as the structure
factor or the radial distribution function1;2;3. How-
ever, recent results suggested that structural finger-
prints of glasses can be found in higher order geo-
metrical motifs, known as locally preferred structures
(LPS), or more sophisticated order parameter, such
as the local configurational entropy4, or introducing
an external perturbation, such as particle pinning5;6

or static shear7.

A key to investigate the interplay between struc-
ture and dynamics arises from the observation of the
temporary clustering of particles with similar mo-
bility, known as Dynamic Heterogeneities (DHs)8.
This inspired a picture of glassy dynamics as the
transient coexistence of a ”slow” and of a ”fast”
phase, that only mix on the timescale of the relax-
ation time9;10;11. Relevant insights in this direction
arise from systems driven out of equilibrium by exter-
nal fields coupled to the particle mobility12;13, where
a true dynamical phase transition and a bimodaly
distributed order parameter have been found. Inter-
estingly, a similar result has been obtained when a
chemical potential is coupled to certain LPS, sug-
gesting that the dynamical phase transition may
have a structural origin14. Conversely, in equilibrium
systems the definition of dynamic phase coexistence
is much more problematic, being not supported by
the identification of a dynamic order parameter that
takes two different values in the two phases; for in-
stance, the van-Hove distribution, often used to iden-
tify DHs has long tails, not a bimodal shape (with
distinct maxima), so that the two phases are usually
empirically defined by fixing an arbitrary threshold
on the particle displacements15. In addition, cor-

relations of local order and particle mobility have
been proved to be highly system dependent and the
existence of a causal link between structure and dy-
namics is still far to be proved, at least to a general
extent16;17;18.

Investigation of the single particle motion is
promising to shed new light on these issues, be-
cause of its well known intermittent character. In-
deed, particles in a glass formers spend most of
their time confined within the cages formed by
their neighbors, seldom making a jump to different
cages19;20;21;22;23;24;25. From the one hand, the abil-
ity of a particle to perform a jump is expected to
be directly affected by the local structure. From
the other hand, these single particle jumps can
be thought as the building block of the macro-
scopic relaxation. We have recently investigated
the cage-jump motion in molecular dynamic simu-
lations26;27;28 and experiments on colloidal glasses29

using a parameter-free algorithm to segment the tra-
jectory of each particle in cages and jumps. We found
that jumps identified in this way are short-lasting
irreversible events, thus suggesting to describe the
glassy dynamics in terms of these elementary relax-
ation events. In this paper, we demonstrate that this
leads to a very general and robust description of the
macroscopic dynamics of glass forming liquids and
to properly define the transient phase coexistence.

Here we show, via molecular dynamics simulations
of a 2D binary mixture of soft disks, that the dy-
namics is well described within a continuous time
random walk approach (CTRW)30, where each step
coincides with a jump. In this framework, the diffu-
sivity of each particle at a given time is proportional
to the number of jumps it has done. This allows to
investigate the distribution of diffusivities focusing
on the distribution of the number of jumps per par-
ticle. In the deeply supercooled regime, this distribu-
tion temporarily acquires a bimodal shape, and thus
allows for the clear identification of two phases of
mobile and immobile particles, confirming previous
results for a prototypic 3D model of glass forming liq-
uids27. In the present 2D model, the dynamic phase
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coexistence is accompanied by a striking structural
counterpart: the distribution of a simple crystalline-
like order parameter is also bimodal, the more the
lower the temperature, and the overlap between the
most ordered and the slowest particles increases on
cooling. Such a simple and clear structural signa-
ture is not a universal feature of glass formers, and
more sophisticated structures, if any, might be rele-
vant in other cases. In this respect, the possibility
to identify two dynamical particle populations, with-
out introducing any arbitrary threshold, has the gen-
eral consequence to facilitate further investigations of
structure-dynamics relationships.

2 Methods

We have performed NVT molecular dynamics sim-
ulations31 of a 50:50 binary mixture of N = 103

of particles interacting via an Harmonic potential,
V (rij) = ǫ ((σij − rij)/σL)

2Θ(σij − rij), in two di-
mensions. Here rij is the interparticle separation and
σij the average diameter of the interacting particles.
We consider a mixture of particles with a diameter
ratio σL/σS = 1.4, known to inhibit crystallization,
at a fixed area fraction φ = 1. Units are reduced
so that σL = m = ǫ = kB = 1, where m is the
mass of both particle species and kB the Boltzmann’s
constant. The two species behave in a qualitatively
analogous way, and all data we have presented refer
to the smallest component, but for those of Fig. 6
that consider both species. The trajectory of each
particle is segmented in a series of cages interrupted
by jumps using the algorithm of Ref.26: we asso-
ciate to each particle, at each time t, the fluctua-
tions S2(t) of its position computed over the interval
[t − 10tb : t + 10tb], with tb ballistic time. At time
t, a particle is considered in a cage if S2(t) < 〈u2〉,
as jumping otherwise. Here 〈u2〉 is the temperature
dependent Debye–Waller factor, we determine from
the mean square displacement as in Ref.32. We note
that in this approach jumps are finite lasting events,
as the time at which each jump (or cage) starts and
ends is identified by monitoring when S2 equals 〈u2〉.

Accordingly, we have access to the time, tp, a parti-
cle persists in its cage before making the first after
an an arbitrary time origin t = 0. (persistence time),
to the waiting time between subsequent jumps of the
same particle tw (cage duration), and to the duration
∆tJ and the length ∆rJ of each jump.

3 Results

3.1 Dynamics

Investigating the same model considered here26, as
well as the 3D Kob-Andersen Lennard-Jones (3D
KA-LJ) binary mixture27 and experimental colloidal
glass29 we have previously shown that the jumps
identified using the algorithm described in Sec.2 are
truly elementary relaxation events, at least in the
investigated regimes. On the one side, jumps have
a small average duration 〈∆tJ〉, essentially constant
on cooling, despite the relaxation time increasing by
order of magnitudes. On the other side, jumps are
irreversible events, as the mean square displacement
increases linearly with the number of jumps per par-
ticle nJ , 〈r

2(nJ)〉 ∝ nJ . These outstanding jumps
properties allow to describe the glassy dynamics of
atomistic systems as a continuous time random walk
(CTRW), extending an approach successfully used
for idealized lattice models33;34. In the following of
this section, first we illustrate the basic cage-jump
properties needed to a CTRW description, then we
show that this approach quantitatively describes the
macroscopic dynamics and allows to access the time
dependent distribution of single particle diffusivities.

3.1.1 From cage-jumps to CTRW

The CTRW model and its wide range of applications
have been largely described in literature35. Briefly,
particle perform a stationary and isotropic random
walk, but the lag time and the the step size fluctuate
according to given distributions. In our description,
each step corresponds to a jump and, accordingly,
the temporal features of this process are fixed by
the distribution P (tw) of the waiting time between
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jumps, or equivalently, by the distribution F (tp) of
the persistence time tp. Indeed, in the CTRW frame-
work these distributions are related through the re-
lation36;37:

F (tp) = 〈tw〉
−1

∫

∞

tp

P (tw)dtw. (1)

This equation also predicts that the averages, 〈tw〉
and 〈tp〉, coincide, 〈tw〉 = 〈tp〉, if P (tw) is exponen-
tial.

Figure 1 shows P (tw) and F (tp) for different tem-
peratures. The top panel clarifies that, at high tem-
perature, the decay of P (tw) is compatible with an
exponential, as it occurs when jumps originate from
a Poissonian process. At low temperature, instead,
the distribution becomes clearly non-exponential, ev-
idencing the growth of temporal correlations. As re-
ported in Ref.26;38, other functions, such as power
laws with exponential cutoff or stretched exponen-
tials, provide reliable fits to P (tw) over the whole
range of investigated temperature. The bottom
panel compares F (tp) with the prediction from Eq.1,
demonstrating a very good agreement.

Figure 2 (main panel) shows the the fundamental
timescales of the CTRW approach, 〈tw〉 and 〈tp〉, as a
function of the temperature. As predicted by Eq. 1,
〈tw〉 = 〈tp〉 at high temperature, where the waiting
time distribution is indeed nearly exponential. Upon
cooling, instead, the growth of temporal correlations
leads to a decoupling between the two timescales. In
particular, we find that 〈tw〉 grows à la Arrhenius,
while 〈tp(T )〉 increases with a faster super–Arrhenius
behavior. This can be understood considering that
the waiting times from particles performing subse-
quent rapid jumps have a major weight on 〈tw〉 but
none on 〈tp〉. Indeed this latter takes contributions
only by the first jump of each particle and is therefore
more affected by rare but very long waiting times.

A comparison with experimental results suggests
that 〈tw〉 and 〈tp〉 correspond respectively to the β
and to the α relaxation time scales of structural
glasses1;33;45, as we better motivate later on. Fur-
thermore, the temperature Tx ≃ 0.002 where 〈tw〉
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Figure 1: Top panel: probability distribution of the
waiting time between subsequent jumps of the same
particle, P (tw). The lin-log plot clarifies that the
distribution is exponential at high temperature and
progressively deviates from this behaviour on cool-
ing. Bottom panel: probability distribution of the
time particles persist in their cages before making
their first jump, F (tp) (points), and prediction ob-
tained from the CTRW model (lines), as in Eq. 1.
The prediction has been obtained numerically inte-
grating the data for P (tw) in the top panel. In both
panels the temperature is T = 2.5, 2.2, 2.0, 1.9, 1.8,
and 1.7× 10−3, from left to right.

and 〈tp〉 firstly decouples marks the beginning of the
Stokes-Einstein (SE) breakdown at the wavelength
of the jump length28, and, is akin of the onset tem-
perature39.

Finally, the spatial features of the CTRW ap-
proach are fixed by the mean square jump length,
〈∆rJ〉 which decreases on cooling as illustrated in
Fig.2 Inset.

3.1.2 CTRW predictions of macroscopic dy-

namics

We start showing that the macroscopic relaxation
can be related to the statistical features of cage–

4



0.0015 0.0020 0.0025
T

0.0

0.2

0.4

0.6

0.8

1.0

〈∆r
J

2〉1/2

0.0015 0.0020 0.0025

T

10
2

10
3

10
4

τ
〈t

p
〉

〈t
w
〉

Figure 2: Temperature dependence of the average
time particles persist in a cage before making the
first jump, 〈tp〉, and of the average cage duration,
〈tw〉. 〈tw〉 is well described by an Arrhenius 〈tw〉 ∝
exp (A/T ) (full line). 〈tp〉 grows á super–Arrhenius
law. The dashed line is a fit to 〈tp〉 ∝ exp

(

A/T 2
)

but
other functional forms, including the Vogel–Fulcher
one, also describe the data. The inset illustrates the
temperature dependence of the average jump length.
The line is a guide to the eye.

jump motion focusing on the persistence correlation
function, we define as the fraction p of particles that
has not jumped up to time t41;42;43;44. According
to the CTRW framework, the persistence can be
related to the distribution of the time tp particles
persist in their cages before making the first jump,
p(t) = 1 −

∫ t
tp=0

F (tp)dtp
33;45;34. The relation be-

tween p and F is illustrated in Fig. 3. At short
times all jumps contribute to the decay of the per-
sistence; consistently, we find p(t) = 1 − t/〈tw〉,
as 〈tw〉

−1 is the rate at which particles jump, and
F = −dp(t)/dt = 〈tw〉

−1. At long times we ob-
serve the persistence to decay with a stretched ex-
ponential, p(t) ∝ exp

(

−(t/τ)β
)

, and therefore ex-
pect F (tp) = −dp(t)/dt ∝ τ−βtβ−1 exp

(

−(t/τ)β
)

,
as verified in Fig. 3c. As usual in structural glasses,
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Figure 3: Panel a shows the decay of the persis-
tence, together with stretched exponential fits of its
long time behavior. Panel b illustrates the early
time decay of the persistence. Lines correspond to
1 − p(t) = t/〈tw〉. Panel c compares F (tp) with full
lines derived from the stretched exponential fit to the
persistence, see text. Panel d illustrates the depen-
dence of the persistence on the average number of
jumps per particle. In all panels the temperature is
T = 2.5, 2.2, 2.0, 1.9, 1.8, and 1.7 × 10−3, from left
to right.

the stretched exponential exponent β(T ) decreases
on cooling from its high temperature value, β = 1.
This decrement causes changes in the macroscopic
dynamics, which can be highlighted considering the
decay of the persistence as a function of the aver-
age number of jumps per particle, 〈nJ(t)〉 = t/〈tw〉,
as in Fig. 3d. The different curves collapse at small
〈nJ〉, as the short time dynamics is controlled by
〈tw〉. Conversely, at a given average large number
of jumps per particle, the lower the temperature the
higher the value of the persistence, indicating the
presence of growing temporal correlations between
the jumps, with particles that have already jumped
being more likely to perform subsequent jumps. In
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this respect, it is worth noticing that the CTRW ap-
proach neglects spatial correlations but encodes the
presence of temporal heterogeneities in the form of
the waiting time distributions.

The diffusion coefficient and the relaxation time
of the self intermediate scattering functions (ISSF),
which are commonly measured in experiments, can
be also related to the statistical features of the cage–
jump motion. For the diffusion constant D, the
CTRW approach predicts D = 〈∆r2J〉/〈tw〉, as illus-
trated in Fig. 4(inset). The ISSF relaxation time τλ
at a generic wavelength λ (wavevector 2π/λ), is ex-
pected to equals the average time a particle needs to
move a distance λ, as in the CTRW approach this is
simply the time particles need to perform, on aver-
age, mλ(T ) = λ2/〈∆r2J (T )〉 jumps. Accordingly, this
time is fixed by the average first jump waiting time,
〈tp〉, by the average cage duration, 〈tw〉, and, by the
average jump duration, 〈∆tJ〉,

τλ ∝ 〈tp〉+ (mλ − 1)〈tw〉+mλ〈∆tJ〉. (2)

The last term is actually negligible at low tempera-
tures, where 〈tw〉 ≫ 〈∆tJ〉

26. Fig. 4 shows that this
prediction agrees very well with the measured data
in the investigated range of λ, with a coefficient of
proportionality of the order of 1. We remark that
we have explored values of λ ranging from 1 to 4 di-
ameters of the largest component, corresponding to
a relaxation time varying more than three decades.

Exploiting the dependence of the diffusivity and
of the relaxation time on the jump properties, the
breakdown of the Stokes–Einstein relation τλ ∝ D−1

appears to be mainly controlled by the ratio of
〈tp(T )〉 and 〈tw(T )〉, but it is also affected by the
temperature dependent jump length, differently to
lattice models, where the step size is fixed. As
a consequence, by equating the first two terms of
the r.h.s. of Eq. 2, the length scale below which
the breakdown of the SE relation occurs 33, l ≃
〈∆r2J〉

1/2(〈tp〉/〈tw〉)
1/2, also depends on the jump

length.

The relation of 〈tp(T )〉 and 〈tw(T )〉 with the
macroscopic dynamics, supports their correspon-
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Figure 4: The relaxation time τλ at length scale λ
is directly related to the cage–jump properties, as
in Eq. 2. λ is measured in unit of the diameter of
the largest particles. For each value of λ we com-
pare values of τλ measured at six different values of
the temperature. The inset illustrates the diffusiv-
ity versus its prediction in terms of the cage jump
properties.

dence with the β (〈tw〉) and the α (〈tp〉) relaxation
timescales of structural glasses, as mentioned above.

3.1.3 Distribution of single-particle diffusiv-

ities

It is not possible to identify the dynamical phases
from the van-Hove (vH) distribution of particle dis-
placements (i.e. the probability that a particle has
moved of a distance r along a fixed direction) with-
out introducing some empirical criteria, for instance
by considering as ‘fast’ 5% particles with the largest
displacement15. This is because, if a fraction of the
particles has a given diffusivity, then their vH dis-
tribution is a Gaussian distribution centered in zero,
with variance proportional to the diffusivity. In the
presence of two groups of particles with different dif-
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fusivities, the overall vH distribution is the weighted
sum of two Gaussians with zero average, and it dis-
plays a single one maximum in zero, not the two ones
required to a clear identification of the two phases.
This clarifies that, in order to investigate whereas
two or more dynamical phases coexist, one should
investigate the diffusivity distribution, not the vH
distribution. However, direct measurements of the
diffusivity distribution are difficult. Furthermore,
a direct inversion of the vH distribution can only
be adopted46;47, if the diffusivity distribution is as-
sumed to be time independent, as in systems with a
unique and sharply defined timescale. Unfortunately
this is not the case of glasses and different approaches
are needed to tackle this problem.

In the CTRW approximation, the diffusivity of
particles that have performed nJ jumps at time t
is d(nJ , t) = nJ(t)〈∆r

2
J 〉/t. The diffusivity is there-

fore simply proportional to the number of jumps per
unit time, which can be easily monitored using our
algorithm. Indeed, Fig.s 5 illustrates several fea-
tures of the distribution of the number of jumps per
particle rescaled by the average number of jumps
〈nJ(t)〉 = t/〈tw〉, which coincides with the distri-
bution of the single particle diffusion coefficient nor-
malized by the average diffusion coefficient, 〈d〉 = D.
In Fig.s 5a and b we show these distributions at dif-
ferent times, respectively at the highest and lowest
temperature we have considered.

At t = 0, P (nJ ; 0) = δ(nJ ) (P (d; 0) = δ(d)), as
particles have not jumped; conversely, in the infi-
nite time limit the distributions have a Gaussian
shape with average value 〈nJ(t)〉 (d = 〈d〉). At
high temperature, the distribution gradually broad-
ens in time, and its maximum moves from nJ ≃ 0
to nJ ≃ 〈nJ〉. At low temperature, conversely, the
distribution becomes bimodal, before reaching its
asymptotic shape. This signals the coexistence of
an immobile or low-diffusivity phase with particles
having performed few or no jumps at all, and of a
mobile or high-diffusivity phase, with particles hav-
ing performed many jumps. We rationalize the ap-
pearance of a bimodal shaped distribution consider-

ing that P (nJ ; t) is affected by the two timescales,
〈tp〉 and 〈tw〉. The slow timescale, 〈tp〉, controls the
value of the peak at nJ = 0, that equals the persis-
tence correlation function, P (nJ = 0; t) = p(t). The
fast timescale, 〈tw〉, controls the average value of the
distribution, as the position of the second maximum
asymptotically occurs at nJ = t/〈tw〉.

Figure 5c shows that the variance to mean ratio
σ2n/〈nJ〉 of P (nJ ; t) approaches a plateau value at
long time. We found that this time scales as 〈tp〉

a,
with a ≃ 1.3 (in general, a ≥ 1 and it is model depen-
dent)27. The plateau value g also grows on cooling.
This is an other consequence of the growing tempo-
ral correlations controlled by the decoupling between
〈tp〉 and 〈tw〉. Indeed, the CTRW approach predicts
that asimptotically g ∝ 〈tp〉/〈tw〉, consistently with
our data (see Fig. 5d) .

It is worth noticing that a distribution with the
long–time features of P (nJ ; t), i.e. a Gaussian distri-
bution with variance σ2n = 〈nJ〉g, is obtained by ran-
domly assigning the jumps to the particles, in group
of g elements. Consistently, at the highest temper-
ature, where correlations are negligible, g = 1 and
P (nJ ; t) corresponds to that obtained by randomly
assigning each jump to the particles, i.e. a Pois-
son distribution. The increase of g on cooling indi-
cates that at low temperature one might observe, in
the same time interval, some particles to perform g
jumps, and other particles to perform no jumps at
all, which illuminates the relation g ∝ 〈tp〉/〈tw〉. We
remark that g is a stationary quantity, as it holds
constant in the infinite time limit.

3.2 Structure-dynamics correlations

We now show that, in the investigated system, the
dynamical phase coexistence is accompanied by clear
structural changes on cooling. These structural
changes has been investigated focusing on the hex-
atic order parameter48, as the hexatic order is that
expected to be relevant in our two dimensional sys-
tem. The hexatic order parameter of particle j, ψj6,
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Figure 5: Panels a and b show the probability distri-
bution of the number of jumps per particle rescaled
by the average number of jumps, at T = 2.5 × 10−3

and at T = 1.7 × 10−3, respectively, and different
times, as indicated. This distribution equals that
of the single particle diffusion coefficient at different
time, rescaled by the average diffusivity, as reported
on the axes. Panel c illustrates the time evolution of
the variance to mean ratio of this distribution. Dif-
ferent curves refer to different temperatures, as in
Fig. 3, from bottom to top. Panel d is a plot of the
asymptotic value of the variance to mean ratio, g, as
a function of 〈tp〉/〈tw〉. The dashed line is a guide to
the eyes, g ∝ 〈tp〉/〈tw〉

is defined as:

ψj6 =
1

zj

zj
∑

m=0

ei6θ
j
m , (3)

where the sum runs over the zj neighbours of the
particle j. We define two particles m and j to be
neighbours if in contact, |rmj | < σmj , where σmj is
their average diameter. θm is the angle between rmj

and a fixed direction (e.g. the x-axis). |ψj6(t)| has its

maximum, |ψj6| = 1, if the neighbours of the particle

j are in a hexagonal order at time t, while |ψj6| = 0
for a random arrangement. We also associate to each

particle its averaged order parameter, 〈|ψj6|〉t, where
the average is computed in the time interval [0 : t].
Note that we have considered the hexatic order pa-
rameter to identify structural heterogeneities, as this
is the ordered characterizing two dimensional assem-
blies of soft disks. In different dimensionalities and
for different potentials other order parameters, or the
excess entropy, might be more appropriate48.

As illustrated in Fig. 6a, the single–particle hex-
atic order parameter has a bimodal distribution, that
becomes more apparent on cooling. This signals the
presence of a small fraction of highly ordered parti-
cles, and suggests that ordered and persistent parti-
cles might be related.

We show that this is actually the case investigating
an overlap function Q between ordered and persis-
tent particles. In particular, we investigate the corre-
lations between the set containing the m = 5% most
persistent particles and that containing the m = 5%
most ordered particles. The persistent particles set
contains all the particles that have not jumped up to
a time t, so that p(t) = m. The most ordered par-
ticles are those with the highest value of averaged
order parameter 〈|ψj6|〉t. For the persistent particles,
nip = 1. Similarly, we introduce a scalar wiψ to distin-
guish between the particles that are among the most
ordered, wip = 1, and those that are not, wiψ = 0.
The overlap between ordered and persistent parti-
cles is therefore defined as

Q(T ) =
(1/N)

∑N
i=0 n

i
pw

i
ψ −m2

m−m2
, (4)

This function equals Q = 1 when the two popu-
lations coincide, and Q = 0 when they are uncorre-
lated. Fig. 6b shows that 〈Q(T )〉 increases on cool-
ing, and thus demonstrates the existence of strong
correlations between statics and dynamics48. Snap-
shots of the system in Fig.s 6c,d illustrate the mean-
ing of Q, confirm that ordered and persistent par-
ticles largely overlap at low temperature, and also
show that they form clusters. Since particles belong-
ing to the core of these clusters can only jump after
those of the periphery, the relaxation of these clusters

8



0 0.2 0.4 0.6 0.8 1

|ψ
6
|

0

0.5

1

1.5

2

P

T=1.7x10
-3

T=2.5x10
-3

0.0015 0.002 0.0025
T

0.2

0.3

0.4

0.5

0.6

Q

T=2.5x10
-3

a b

c d T=1.7x10
-3

Figure 6: (a) Probability distribution of the hexatic
order parameter, P (|ψ6|). (b) Temperature depen-
dence of the average overlap between persistent and
ordered particles. (c,d) Snapshots of a portion of the
system at different temperatures, as indicated, and
at times t such that p(t) = 5%. The 5% particles that
have not yet jumped (thin red circles), and the 5%
with the highest averaged (from 0 to t) hexatic or-
der parameter (thick blue circles) are shown. Parti-
cles being simultaneously ordered and persistent are
highlighted (filled circles).

is highly cooperative. At the level of the single parti-
cle cage–jump motion, this k–core49 like mechanism
appears the one responsible for the decoupling of the
two timescales, and for the emergence of dynamical
heterogeneities. It is worth noticing that these highly
ordered clusters look like micro-crystals, which are
indeed likely to form in this systems, although full
scale crystallization is suppressed.

4 Discussion

The CTRW approach completely neglects the pres-
ence of spatial correlations between jumps of dif-

ferent particles. Indeed, we recently showed that,
for the model considered here, jumps actually oc-
cur in group of few particles28. Moreover, for a cor-
rect CTRW description it is crucial to fairly iden-
tify elementary irreversible events. In the deeply su-
percooled regime this could become problematic, as
subsequent jumps of a same particle are expected to
become increasingly anti-correlated, in the form of
back and forward moves. In that case, alternative
definitions of local relaxation events or more sophis-
ticated methods to distinguish irreversible jumps are
needeed to properly describe the dynamics within
a CTRW approach. For the system considered
here, our algorithm successfully identifies irreversible
jumps, at least in the temperature range allowed by
simulations. Indeed, we have shown that the CTRW
framework describes surprisingly well the dynamics
of this atomistic glass-formers down to the lowest in-
vestigated temperature. In the 3D KA-LJ, small de-
viations from the CTRW predictions are only found
at the lowest investigated temperature27.

Differences between glassy dynamics in two and
three dimensions, whether fundamental or apparent,
has been debated in very recent works50;51, pointing
out that dimensionality and system size lead to quan-
titative change in the cage-jumps properties. Despite
of these differences, we have shown that our approach
provides the same dynamical scenario in 2-D and 3-
D systems, and a robust framework to connect the
microscopic and the macroscopic dynamics.

The main success of this approach is the iden-
tification of two dynamical phases trough the
bimodal shape of the diffusivity distribution. In
the investigated 2D system, the dynamical phase
coexistence is accompanied by a striking ”structural
bimodal” of the hexatic order parameter, that is
probably related to the presence of micro-crystals.
The same clear structural signature is not ob-
served in other standard glass formers, where local
crystallization is completely suppressed. This can
raise the suspect that the ”dynamic bimodal”
distribution of diffusivities is directly triggered by
that of the hexatic order, and thus it is a peculiar
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property of this systems as well. By contrast, we
can claim that the temporary bimodal shape of
the diffusivity distribution is a general property
of glass formers, as for the standard 3D KA-LJ
models we do observe a dynamical bimodality but
not a structural bimodality27, at least when the
structure is investigated via crystalline-like order
parameters. This demonstrates that the dynamical
phase coexistence is not necessarily related to
local crystallization, but does not exclude that
correlations with different structural properties
could exist. In general, it remains an open question
whether the dynamical phase coexistence has a
structural counterpart, or whether the reported
structure-dynamics correlations must be considered
as a by-product of particular models.
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