44 research outputs found

    The role of ARNT in liver and myeloid cell function

    Get PDF
    Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor which acts as a general partner for members of the bHLH/PAS family of transcription factors. To investigate the effect of long term ARNT deletion in hepatocyte and myeloid cells, we created 2 lines of mice with ARNT deletion in these cells. Mice lacking hepatocyte ARNT had impaired glucose tolerance, increased gluconeogenesis, decreased ATP and increased post-prandial serum triglycerides. However, in contrast to type 2 diabetes (T2D) hepatic ARNT deletion resulted in decreased liver steatosis. Importantly, these changes became non-significant after high fat diet (HFD). Decreased ARNT in myeloid cells led to decreased cytokine expression, decreased phagocytosis, decreased bactericidal activity, impaired response to infection, and impaired wound healing. Again, the phenotype of impaired wound healing equilibrated in a diabetic milieu. In addition mice lacking ARNT in myeloid cells displayed impaired glucose tolerance on HFD and paradoxically increased liver inflammation. In human monocytes ARNT mRNA correlated negatively with serum cytokine levels of IL-6, IL-8, MCP-1 and TNF-α. This data demonstrates that ARNT has important roles in hepatocyte and myeloid cell function and suggests that modulation of this transcription factor could be used in future therapy for diabetes and disorders of immune function

    Flow cytometric assessment of leukocyte kinetics for the monitoring of tissue damage

    Get PDF
    Leukocyte populations quickly respond to tissue damage, but most leukocyte kinetic studies are not based on multiparameter flow cytometry. We systematically investigated several blood leukocyte populations after controlled tissue damage. 48 patients were assigned to either an anterior or posterolateral total hip arthroplasty. Peripheral blood was collected pre-operatively and at 2 h, 24 h, 48 h, 2 and 6 weeks postoperatively and assessed by flow cytometry for absolute counts of multiple leukocyte populations using standardized EuroFlow protocols. Absolute counts of leukocyte subsets differed significantly between consecutive time points. Neutrophils increased instantly after surgery, while most leukocyte subsets initially decreased, followed by increasing cell counts until 48 h. At two weeks all leukocyte counts were restored to pre-operative counts. Immune cell kinetics upon acute tissue damage exhibit reproducible patterns, which differ between the leukocyte subsets and with “opposite kinetics” among monocyte subsets. Flow cytometric leukocyte monitoring can be used to minimally invasively monitor tissue damage.This was supported by Stichting Anna Fonds/NOREF (Dutch Orthopedic Research and Education Fund) and the Erasmus MC Medical research grant (grant no. DRP337224)

    Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency

    Get PDF
    One of the severe combined immunodeficiencies (SCIDs), which is caused by a genetic defect in the signal transduction pathways involved in T-cell activation, is the ZAP70 deficiency. Mutations in ZAP70 lead to both abnormal thymic development and defective T-cell receptor (TCR) signaling of peripheral T-cells. In contrast to the lymphopenia in most SCID patients, ZAP70-deficient patients have lymphocytosis, despite the selective absence of CD8+ T-cells. The clinical presentation is usually before 2 years of age with typical findings of SCID. Here, we present three new ZAP70-deficient patients who vary in their clinical presentation. One of the ZAP70-deficient patients presented as a classical SCID, the second patient presented as a healthy looking wheezy infant, whereas the third patient came to clinical attention for the eczematous skin lesions simulating atopic dermatitis with eosinophilia and elevated immunoglobulin E (IgE), similar to the Omenn syndrome. This study illustrates that awareness of the clinical heterogeneity of ZAP70 deficiency is of utmost importance for making a fast and accurate diagnosis, which will contribute to the improvement of the adequate treatment of this severe immunodeficiency

    Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood

    Get PDF
    Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual "expert-based") gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings

    Analysing the developing lymphocyte system of neonates and infants

    No full text
    corecore