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Abstract  

Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor which acts as a 

general partner for members of the bHLH/PAS family of transcription factors. Previous research has 

found that ARNT mRNA was decreased in the islets and in the livers of type 2 diabetes (T2D) patients.  

This hinted at a potentially global downregulation of this factor in the setting of T2D.  To investigate 

the effect of long term loss of ARNT in hepatocyte and myeloid cells, 2 lines of mice with ARNT 

deletion in these cell types. In common with T2D, mice lacking hepatocyte ARNT had impaired 

glucose tolerance, increased gluconeogenesis, decreased ATP and increased post-prandial serm 

triglycerides. However, in contrast to T2D hepatic ARNT deletion actually resulted in decreased liver 

steatosis.  Importantly, these changes became non-significant after high fat diet (HFD), although we 

did not find a significant reduction in total ARNT protein fed HFD.  

Deletion of ARNT in myeloid cells led to decreased cytokine expression, decreased phagocytosis, 

decreased bactericidal activity, impaired response to infection, and impaired wound healing. Again, 

the phenotype of impaired wound healing between knockout and control animals equilibrated in a 

diabetic milieu. It was then found the full effects of the the iron chelator Desferasirox (DFO) on 

improving diabetic wound healing require myeloid cell ARNT.  In addition mice lacking ARNT in 

myeloid cells displayed impaired glucose tolerance on HFD and paradoxically increased liver 

inflammation.  In human monocytes it was found that ARNT mRNA correlated negatively with key 

serum cytokine levels including IL-6, IL-8, MCP-1 and TNF-α, although there was no significant 

difference in monocyte ARNT mRNA in T2D patients compared to controls. This data demonstrates 

that ARNT has important roles in hepatocyte and myeloid cell function and suggests that modulation 

of this transcription factor could be used in future therapy for diabetes and disorders of immune 

function. 
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Chapter 1. Introduction  
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1.1 The liver 

 

The liver is the largest solid organ in the body and occupies the right upper quadrant of the 

abdomen.  This organ is uniquely placed between blood returning from the digestive tract and the 

systemic circulation such that it is the first port of call for nutrient enriched blood after a meal (1).  

The liver has been labeled the most important metabolic organ in the body (2) and it functions to 

process dietary amino acids, carbohydrates, lipids, vitamins and micronutrients.  The liver is also 

responsible for secretion of bile for fat absorption, the removal of microbes and toxins from the 

blood returning from the digestive tract, synthesis of a range of plasma proteins, and detoxification 

of endogenous wastes and pollutant xenobiotics.  

 

 

Figure 1.1 Blood supply to the liver.  
Blood from the hepatic artery and nutrient rich portal vein enters the liver and mixing in the sinusoids before 
draining via the hepatic vein to the inferior vena cava. 

 

These crucial functions of the liver are performed by a limited number of cell types. Within the liver 

cells are bathed in a mixture of arterial 30-40% and portal vein 60-70% blood (1) (Figure 1.1). Blood 

from the branches of the hepatic artery and portal vein flows from the periphery of the lobule into 

large expanded capillary spaces called sinusoids which run between rows of hepatocytes.    As shown 

(Figure 1.2), the richly perfused hepatocytes line the outside of the sinusoids and make up 80% of the 

cell volume of the liver and it is these cells that perform the metabolic and detoxification processes 

(1).  To allow the hepatocytes direct access to larger blood components endothelial cells lining the 

Thoracic aortaInferior vena cava

Portal vein

Hepatic Vein

Liver

Hepatic artery

Abdominal aorta
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sinusoids have a discontinuous fenestrated anatomy with no basement membrane.  Hepatocytes 

also extend microvillus into the space of Disse, which lies between the endothelial cells and 

hepatocytes, to increase the surface area in contact with blood components. Between rows of 

hepatocytes are bile canaliculi where bile is secreted to aid in digestion along with conjugated non- 

aqueous waste products for elimination in the faeces. The remaining 20% of the liver mass is 

comprised of endothelial cells, hepatic stellate cells, Kupffer cells and lymphocytes (3).  The Kupffer 

cells are the macrophage cell of the liver and line the sinusoids, engulfing and destroying old red 

blood cells and microbes (1).  Hepatic stellate cells are found in the space of Disse.  Given the 

important functions of the liver it is clear that dysfunction of this organ will have far reaching 

implications.   

 

 

 

 

Figure 1.2 Microstructure of liver sinusoids and cell types.  
A stylised cross section of a liver sinusoid is shown in the upper panel. Blood flows from portal vein and hepatic 
artery branches and flows between rows of hepatocytes. Blood drains from sinusoids into branches of the 
central vein.  Bile is synthesized by hepatocytes and secreted into bile duct branches. The lower panel shows 
the major cell types and their relations within the liver sinusoids. 
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1.2 Normal liver metabolism 

 

The liver is involved in key functions in metabolism, including maintenance of blood glucose levels 

through glucose uptake and storage, glycogen breakdown, and gluconeogenesis, and lipid 

homeostasis (1, 2).  As such a discussion of normal liver function is warranted.  

 

 

1.2.1 Liver glucose metabolism 

 

In order to achieve its function as a glucose ‘buffer’ the liver expresses a specific glucose transporter 

(GLUT-2) (4).  This transporter protein primarily occurs in the liver and pancreatic β cells and has a 

high capacity with low affinity.  Essentially this transporter allows linear uptake of glucose in 

proportion to extracellular glucose concentration.  In comparison, the GLUT-1 isoform  is required to 

ensure basal uptake of glucose into cells to maintain respiration and is expressed only at low levels in 

the normal liver (4).  Glycolysis is a universal cellular pathway whereby glucose is converted into 2 

pyruvate, 2 ATP and 2 NADH molecules in the cell cytosol (Figure 1.3).  Pyruvate can then be 

converted to Acetly-CoA and enter the tricarboxylic acid cycle (TCA), the products of which are used 

in oxidative phosphorylation to produce even greater amounts of ATP.  Glycolysis consists of ten 

enzymatic reactions. The first step of the glycolytic pathway is the phosphorylation of glucose to 

glucose-6-phosphate (G6P) by hexokinase (HK) using ATP (Figure 1.3).  Importantly to whole body 

metabolism the liver predominantly expresses an isoform of HK called glucokinase (GK).  Interestingly 

again this isoform is also expressed in pancreatic β-cells. GK has different kinetics to the HK 

expressed in the majority of tissues (4).  GK has a low binding affinity for glucose at low 

concentrations and increasing activity with increasing glucose concentration.  This ensures that the 

liver does not compete with the other tissues when glucose levels are low but acts to efficiently take 

up extra glucose in times of glucose excess.  GK is also not inhibited by physiological concentrations 

of G6P allowing the liver to take up extra glucose for storage as triglyceride (TG) or glycogen (4).  In 

this way the liver has the ability to act as a “glucose buffer” for the plasma glucose concentration. In 

the liver the process of glucose uptake is thus regulated by circulating glucose. G6P is a key 

intermediate in the liver which can be used for synthesis of glycogen, new glucose, ribose-5-

phosphate (R5P) and NADPH and acetyl-CoA (Figure 1.4).  

 

The next two reactions catalysed by phosphoglucose isomerise (PGI) and then phosphofructokinase 

(PFK) converts G6P to fructose-6-phosphate (F6P) and then phosphorylates F6P in an irreversible 
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action to produce fructose-1, 6-bisphophate (FBP).  PFK plays a key role in glycolysis as it is one of the 

rate determining reactions.  The following reactions ultimately result in the formation of two 

pyruvate molecules ATP and NADH as mentioned previously.  

 

 

Figure 1.3 The glycolytic pathway.  
The liver glycolytic pathway is shown with intermediates in blue boxes. The enzymes catalysing each step are 
also shown.   
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Figure 1.4 Alternate fates of G6P.   
G6P can be converted to glucose (1) or to glycogen for storage (2). Acetyl coenzyme A (acetyl-CoA) derived 
from its degradation can be used for oxidative phosphorylation in the mitochondria. Acetyl-CoA also be used 
for lipid synthesis (3).  Finally G6P can be diverted to the pentose phosphate pathway for NADPH and Ribulose-
5-phosphate (R5P) for nucleotide synthesis (4). 

  

1.2.1.1 Pentose phosphate pathway. 

 

Many reactions, notably the reductive synthesis of fatty acids and cholesterol, require NADPH in 

addition to ATP.  The two key products of the pentose phosphate pathway are Ribulose-5-phosphate 

(R5P) and NADPH.  R5P is used in nucleotide biosynthesis.  Excess R5P is converted into glycolytic 

intermediates fructose-6-phosphate (F6P) and glyceraldehyde-3-phosphate (GAP). Around 30% of 

glucose taken up by liver cells is shunted into the pentose phosphate pathway reflecting the high 

rates of synthesis of fatty acids and cholesterol (4). Entry of G6P into the pentose phosphate pathway 

is regulated positively by increasing NADP+ concentration which acts on glucose-6-phosphate 

dehydrogenase.   

 

 

1.2.1.2 Anaerobic glycolysis 

 

In situations where oxygen levels may be depleted and it is necessary for the glycolytic pathway to 

keep functioning to provide the cell with ATP, anaerobic glycolysis can occur. In this case, pyruvate is 

not shuttled off but instead recycled and converted to lactate and nicotinamide adenine dinucleotide 

(NAD+) through the actions of lactate dehydrogenase (LDH) (4).  The liver is able to take up lactate 

from the circulation and convert it back into glucose by the process of gluconeogenesis (see below). 
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1.2.1.3 Tricarboxylic acid (TCA) cycle 

 

The molecules of pyruvate produced by glycolysis can also be converted to acetyl-CoA via the 

sequential actions of the pyruvate dehydrogenase enzyme.  Acetyl-CoA can be used to generate 

energy by oxidative phosphorylation in the mitochondria or be converted into fatty acids.  In order to 

generate energy acetyl-CoA must cycle through the TCA cycle producing 3 NADH, one FAD and one 

GTP molecule which can then donate their electrons to the oxidative phosphorylation chain in the 

mitochondria producing large amounts of ATP (12 per acetyl-CoA, or 38 per glucose ) (Figure 1.5). 

 

 

Figure 1.5 The Tricarboxylic Acid Cycle.  
Intermediate molecules are shown in blue boxes. Enzymes catalyzing each step and key substrates and 
products are also shown.  
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1.2.1.4 Gluconeogenesis 

 

When serum glucose is low, the liver responds by glycogenolysis (breakdown of glycogen) and 

gluconeogenesis (glucose synthesis) to provide glucose to the rest of the body (4-6).  

Gluconeogenesis provides a substantial fraction of the glucose produced in fasting humans, even 

within hours of feeding.  The liver and to a lesser extent the kidney have the highest capacity for 

gluconeogenesis (4).  Gluconeogensis enables these tissues to convert organic compounds such as 

glycolysis products (lactate and pyruvate), citric acid cycle intermediates and the carbon skeletons of 

many amino acids to derive glucose which is then released into the circulation.  Thus the liver has an 

important role in maintaining blood glucose levels through glycogen breakdown and 

gluconeogenesis.  Essentially the reactions in gluconeogenesis are the reverse for those of glycolysis 

except for the addition of four enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase 

(PEPCK), fructose 1,6-bisphosphatase (F16BP) and glucose-6-phosphatase to catalyse the non-

reversible steps (Figure 1.6). 
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Figure 1.6 Gluconeogenesis.  
This diagram shows gluconeogenesis (red arrows) and glycolysis (black arrows).  Irreversible steps requiring the 
addition of purely gluconeogenic enzymes are highlighted in red text.    
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secreted into the blood in the form of very low density lipoprotein (VLDL). These VLDL particles can 

then be absorbed by adipose tissue as TGs or metabolised and used as an energy source in tissues 

throughout the body (1, 4).  

 

The metabolic process of DNL in the liver appears to be tightly regulated, and in the state of energy 

excess surplus glucose is used as a FA substrate (8).  Citrate formed from the TCA cycle is shuttled 

into the cytosol via the tricarboxylate transport system where FA synthesis takes place.  Citrate is 

converted to acetyl-CoA by ATP citrate lysate.  Acetyl-CoA is then converted to malonyl-CoA by 

Acetyl-CoA carboxylase 1 (ACC1) and it is this molecule that is used by fatty acid synthase (FAS) to 

add 2 additional carbon groups to the fatty acid with each additional cycle of FAS (Figure 1.7)(4).  

 

In comparison the hepatic uptake of FA from the NEFA pool is not regulated and as a result serum 

FFA influx into the liver is directly related to serum FFA concentration (8).  TG are synthesised from 

fatty acyl-CoA esters using glycerol-3-phosphate or dihydroxyacetone phosphate from glycolysis of 

glucose as the backbone.  This TG synthesis can occur in the mitochondria and the endoplasmic 

reticulum in the case of glycerol-3-phosphate or in the endoplasmic reticulum and peroxisomes in 

the case of dihydroxyacetone phosphate (4).   
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Figure 1.7 Fatty acid synthesis.   
The synthesis of fatty acids involves a number of reactions catalysed by the multi-enzyme Fatty Acid Synthase 
complex. These reactions result in the addition of 2 carbon atoms per cycle and consume 2 x NADPH. Initially 
Malonyl-CoA serves as the backbone for FA synthesis.  Acyl Carrier Protein = ACP.  
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(LXRs). Insulin signalling results in LXR activation and transcriptional activation of SREBP-1c.  LXRs also 

directly regulate the expression of lipogenesis genes FAS, SCD1 and ACC (9).  LXRs play a key role in 

the sensing of intracellular sterol levels and regulate the expression of genes that control absorption, 

storage and transport of cholesterol (12). 

 

Excess carbohydrate is mainly converted to TG in the liver both through the effects of insulin and 

hyperglycaemia itself (9, 13).  High glucose levels can directly stimulate lipogenesis by activating 

carbohydrate response element binding protein (ChREBP) (13). Importantly ChREBP induces 

expression of liver-type pyruvate kinase (L-PK) which catalyses the production of increased pyruvate 

and hence citrate generation and lipognesis (14).   ChREBP also induces genes involved in NADPH 

production (glucose-6-phosphate dehydrogenase, transketolase, malic enzyme etc.) and 

gluconeogenesis (G6Pase) (14). ChREBP also increases transcription of genes directly involved in 

lipogenesis including ACC and FAS (14).  ChREBP inactivation is thought to be regulated by glucagon, 

epinephrine and direct AMP effects. Increased glucagon and epinephrine occurring in the fasting 

state increase cAMP and activate cAMP activated protein kinase (PKA) (15).  PKA then 

phosphorylates ChREBP and inactivates it.  Increased AMP accumulation in states of low glucose 

inhibits ChREBP through activation of AMP-activated protein kinase (AMPK) and phosphorylation of 

ChREBP (15).  Glucose activates ChREBP through the hexose monophosphate shunt (HMP) via 

activation of protein phosphatase 2A delta (PP2Adelta) and subsequent dephosphorylation of 

ChREBP(15). It appears that ChREBP can respond to glucose in another way as mutants lacking the 

PKA phosphorylation sites are still responsive to glucose.  In addition the levels of ChREBP RNA are 

regulated and increased in fed states. LXR also regulated transcription of ChREBP (15). 

 

 

1.2.2.1 FA and TG oxidation. 

 

Oxidation of FA occurs in the mitochondria, peroxisomes and microsomes (4). The majority of fatty 

acid oxidation occurs in the mitochondria. The peroxisomes and microsomes oxidise and shorten 

long chain and very long chain fatty acids and then the process is completed in the mitochondria 

(16).  

 

Peroxisomal β oxidation shortens fatty acids > 22 carbon atoms in length.  These very long chain fatty 

acids (VLCFAs) simply diffuse into peroxisomes and are activated by a long chain acyl-CoA synthetase 

(16).  It is noteworthy that peroxisomal oxidation results in the production of H2O2 which then needs 

to be converted back to H20 and O2 by catalyse.  Peroxisomal oxidation also yields 2 fewer ATP per 
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cycle compared to mitochondrial beta oxidation (4, 16).  Peroxisomal oxidation proceeds until FA 

acyl-CoA are 8 carbon atoms in length, and then these shortened FA acyl-CoA molecules are 

converted to their carnitine esters by carnitine acyltransferases.  These carnitine esters can then 

diffuse out of the peroxisome and be transported into the mitochondria and undergo complete 

oxidation (4).    

 

The rate-limiting step of mitochondrial fatty acid oxidation is entry of FA into the mitochondria (4).  

To gain entry into the mitochondria FA must first be converted to fatty acyl-CoA by the actions of 

fatty acyl-CoA synthase in the cytosol then transported into the mitochondria by carnitine 

acyltransferase I (CPT-1).  This process involves the transfer of the acyl group  to carnitine, transport 

of this carnitine ester into the mitochondria and transfer of the acyl group back to CoA in the 

mitochondrial pool (4).  The Degradation of fatty acyl-CoA oxidation in the mitochondria occurs in 

four reactions (Figure 1.8).  

 

The first step catalysed by acyl-CoA dehydrogenase and results in the formation of 1 FADH2 then 

results in the immediate formation of 2 ATP through the electron transport chain in the 

mitochondria.  Like the formation of fatty acids the four step reaction ultimately results in the 

formation of 1 FADH + 1 NADH + 1 Acetyl-CoA and 1 fatty acyl-CoA  which is 2 carbon atoms shorter 

in length (Figure 1.8). Acetyl-CoA can then be oxidised via the TCA cycle and generates further ATP.  

Importantly, in the liver mitochondria a significant fraction of acetyl-CoA is converted to 

acetoacetate or D-β-hydroxybutyrate (ketone bodies).  These molecules can be used as an alternate 

energy source in peripheral tissues particularly the heart and skeletal muscle (4). During this process 

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) is formed by HMG-CoA synthase, and this product is 

also a precursor to cholesterol biosynthesis. 
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Figure 1.8 Fatty Acid oxidation.   
This diagram shows the cycle and products of the oxidation of 2 carbons from a fatty acyl CoA. Intermediate 
molecules are shown in yellow boxes. Enzymes required to catalyse each reaction are also shown.   
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It has been shown that cholesterol is synthesised from molecules of acetate (4).  To be used in 

cholesterol synthesis acetate must first be converted to isoprene units.  Once condensed to form a 

linear molecule the carbons cyclise to form the four-ring structure of cholesterol. Acetyl-CoA is 

converted to isoprene units by a series of steps that begin with formation of HMG-CoA.  HMG-CoA 

synthesis requires thiolase and HMG-CoA synthase.  Isoforms of these two enzymes are located in 

the mitochondrion and are also responsible for the formation of HMG-CoA for ketone synthesis.  The 

cytosolic isozymes of these two enzymes are responsible for the formation of HMG-CoA that is used 

in cholesterol synthesis.  A number of reactions are required to convert HMG-CoA molecules into 

cyclic cholesterol molecules (4). Cholesterol synthesised in the liver can be used by hepatocytes in 

cell membrane formation, hormone synthesis, bile production or exported to the rest of the body (4).  

If cholesterol is to be exported it is esterified by acyl-CoA: cholesterol acyltransferase (ACAT) to form 

esters.  These hydrophobic compounds are transported throughout the body in lipoprotein packages 

as a component of VLDL.  These particles mature into LDL as triglycerides and apolipoproteins are 

removed.  LDL particles are taken up in cells by receptor mediated endocytosis via LDL receptors.  

Once inside the cell cholesterol esters are hydrolysed into cholesterol which can be incorporated into 

cell membranes or re-esterified by ACAT and stored as cholesterol ester droplets (4).   

 

Cholesterol levels are regulated by controlling HMG-CoA reductase activity, LDL receptor synthesis 

and the rate of esterification of cholesterol by ACAT (4).  HMG-CoA reductase is the rate-limiting 

enzyme in cholesterol biosynthesis and is subject to rapid regulation by phosphorylation by an AMP-

dependent kinase in response to decreased cellular ATP. Phosphorylated HMG-CoA is less active than 

the non phosphorylated form (4).  Expression of HMG-CoA reductase is also regulated at the mRNA 

level and degradation can also be inhibited.  SREBP-2 is a transcription factor thought to be key 

regulator of cholesterol biosynthesis in the liver (18).  SREBP-2 responsive genes include HMG-CoA 

synthase, HMG-CoA reductase, farnesyl diphosphate synthase and squalene synthase.  SREBP-2 is 

regulated through cholesterol sensing by the SREB processing protein SREBP cleavage activating 

protein (SCAP) (18).  When cholesterol levels are low SCAP delivers SREBP-2 from the ER to the golgi 

where it is activated through proteolytic cleavage.   

 

Removal of LDL from the circulation is controlled by the expression of LDL receptors.  The expression 

of these receptors is thus another mechanism for reducing circulating cholesterol levels.  High 

intracellular concentrations of cholesterol suppresses the expression of the LDL protein (4). 
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1.3 Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic 

steatohepatitis (NASH). 

 

Non-alcoholic fatty liver disease is the accumulation of macroscopically visible lipid in hepatocytes in 

the absence of excess alcohol consumption (<20g of ethanol/day) (19) .  Histologically NALFD has 

been defined by the accumulation of fat in more than 5% of hepatocytes (9).  It is often a patchy 

process with some areas having the majority of cells affected and relative sparing in others.  The 

spectrum of NAFLD includes a range of pathological features from mild steatosis to non-alcoholic 

steatohepatitis (NASH) and cirrhosis with increasing levels of liver dysfunction (Figure 1.9) (20).   

 

The diagnosis of NASH and grading of NAFLD and NASH varies between pathologists and numerous 

criteria have been proposed. Matteoni et al (table 1.1) proposed a staging system linking histological 

features to progression to cirrhosis and liver related death (21).  In this system staging included a 

score of (1) fatty liver alone; (2) fat accumulation and lobular inflammation; (3) fat accumulation and 

ballooning degeneration; and (4) fat accumulation, ballooning degeneration, and either Mallory 

hyaline or fibrosis.   

 

It is noteworthy that more recently a NAFLD activity score was proposed by Kleiner et al (2005) based 

on the histological features identified by multiple pathologists which were independently associated 

with the diagnosis of active NASH. The scoring system in this study suggested a staging system where 

the score is defined as the cumulative scores for steatosis (0-3), lobular inflammation (0-3), and 

ballooning (0-2) (22).  Fibrosis activity (Table 1.1) was included as a separate score as the diagnosis of 

active NASH does not correlate well with fibrosis progression (23).   
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Table 1.1 Criteria for histological grades. 

 1 2 3 4 

NAFLD grade fatty liver alone >5% fat accumulation 
and lobular 
inflammation 

fat accumulation 
and ballooning 
degeneration 

Fat accumulation, 
ballooning 
degeneration, and 
either Mallory 

hyaline or fibrosis.   
 

Fibrosis grade Perisinusoidal or 
periportal = 1 
 
Mild, zone 3, 
perisinusoidal=1A 
 
Moderate, zone 3, 
perisinusoidal=1B 
 
Portal/periportal =1C  

Perisinusoidal 
and 
portal/periportal 

Bridging fibrosis Cirrhosis 

 

A     B 

  

C     D  

   

Figure 1.9 Histological staging of NALFD.  
(A) Normal liver.  (B) Liver with steatosis. (C) Masson trichrome stain of NASH with fibrosis in grey (from 
http://emedicine.medscape.com/article/2038493-overview).   (D) Mallory body within ballooning hepatocyte - 
grey arrow (from http://www.medscape.com). 
 

 

Available evidence suggests that NAFLD is the cause of around 80% of elevated liver enzyme levels in 

America (24). Conversely, it has also been estimated that 79% of those with NAFLD do not have 

http://emedicine.medscape.com/article/2038493-overview
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raised serum alanine transferase levels (25).  Using magnetic resonance spectroscopy (MRS) it was 

found that NAFLD was present in up to 34% of the general population in the USA (25).  NAFLD/NASH 

are also noted to have a high prevalence in South America, much of the Asia Pacific region (including 

Australia), the Middle East and Europe (26).  

 

Most NAFLD patients have increased liver fat content alone but some (10%-30%) go on to develop 

NASH (26, 27). NASH involves hepatocyte steatosis with addition of signs of inflammation 

characterised by lobular inflammation, hepatocyte ballooning (Figure 1.9) and fibrosis (21).  NASH 

can in turn lead to increasing liver fibrosis and cirrhosis, liver failure and hepatic carcinoma (HCC) (28, 

29). Rates of cirrhosis development have been estimated to be between 5 – 20% over 10 years of 

follow up (26).  Cirrhosis carries with it the risk of complications including ascites, renal failure, 

variceal bleeding, hepatic encephalopathy and HCC (30).  In one study of 420 NAFLD patients the rate 

of liver-related mortality at 7 years was 1.7% and accounted for 13% of all deaths compared to <1% 

in the general population (30). Current treatment of end-stage liver disease requires liver transplant.  

It is predicted that NAFLD will soon become the leading cause of chronic liver disease and reason for 

liver transplants (8).  Important risk factors for NAFLD are obesity, diabetes and the metabolic 

syndrome (MetS) (27).  As might be expected as alcohol consumption can also lead to steatosis, 

cross-sectional studies also support a role for heavier alcohol consumption (>60g/day) and increased 

steatosis and injury in obese individuals (31). As the prevalence of these metabolic risk factors are 

increasing the prevalence of liver chronic disease related to NASH/fibrosis can be expected to rise 

with it. It is clear that genetics also play a role as evidenced by the different prevalence of NAFLD in 

different ethnic groups of similar socioeconomic status.  The frequency of NAFLD was found to be 

45% in Hispanics, 33% in Whites and 24% in Blacks.  Correspondingly there was increased insulin 

resistance and obesity in Hispanics but there was no association of the lower rates of steatosis in 

blacks with these factors, suggesting a strong independent genetic component.  The rates of NAFLD 

were also found to be higher in males 42% than females 24% (25). Important risk factors for 

progression of NASH fibrosis include obesity, type 2 diabetes (T2D) and initial fibrosis severity (26). 

 

1.3.2  Obesity 

Obesity is defined by the World Health Organisation as excess weight for a given height (32). 

Functionally this is calculated as body mass index (BMI). Obesity as defined as BMI ≥over 30 (WHO) 

and has become a global epidemic as a result of sedentary lifestyles and the availability of processed 

high calorie foods and soft drinks in industrialised countries.  Currently, around 35% of American 

adults are overweight (BMI 25-29.9) and 30% are obese (32).  In 2005 in Australia 36% of the 
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population were overweight and 18% obese and this percentage is constantly increasing (33). 

Further, it is estimated that the cost of obesity and its associated illnesses in Australia in 2005 was 

21billion.  This high cost to society is primarily due to the association of obesity with metabolic 

derangements and the resultant pathologies.  One such association is that of obesity and the 

development of insulin resistance. In fact the vast majority of obese individuals are insulin resistant 

(34) and insulin resistance is a key component of NAFLD, Metabolic syndrome (MetS) and T2D (35).  

 

There is a clear association of obesity and NALFD with a prevalence of 3-24 % of non-obese patients 

compared with 76% in obese patients and 90% in morbidly obese (BMI=35+ (26, 36, 37).  Obesity is 

also a risk factor for NASH, particularly central obesity (26).  Obesity clearly contributes to NAFLD and 

NASH through oversupply of lipids but also contributes to disease through its role in inflammation as 

discussed later.  Importantly visceral fat in particular has been found to correlate with the extent of 

hepatic inflammation and fibrosis, potentially through increased IL-6 levels (38).    

 

1.3.3 The metabolic syndrome 

In recent years there has been a dramatic increase the prevalence of the controversial MetS, which 

parallels the increase in obesity (35).  MetS is a clustering of features intrinsically linked to obesity 

and insulin resistance.  Table 1.2 shows the definitions of the metabolic syndrome WHO, American 

Diabetes Association, The National Cholesterol Education Program’s Adult Treatment Panel III 

guidelines (NCEP:ATPIII) and International diabetes federation (IDF). NAFLD has been named the liver 

component of the metabolic syndrome (MetS).  It was found that over 90% of NALFD patients have 

at least one feature of the metabolic syndrome (27) and 1/3 have the complete syndrome (by the  

National Cholesterol Education Program’s Adult Treatment Panel III guidelines) (39).  Interestingly, 

the combination of the full gamut of MetS and NAFLD confers an increased likelihood of 

development of NASH at an odds ratio of 3.2, and liver fibrosis at 3.5  (27). Definitions of the 

metabolic syndrome vary between organisations, however they have been sought as it was 

recognised early on that that patients with features such as obesity, central obesity, high serum 

triglycerides, low HDL (good cholesterol), high blood pressure and high blood glucose had an 

increased risk of cardiovascular events and T2D (1).  In fact is has been estimated that such patients 

have approximately twice the risk of cardiovascular events and five times the risk of development of 

T2D. Using this definition the prevalence of MetS has been estimated to be 22%, increasing to 45% of 

those over the age of 50 (27, 35).  The prevalence of NAFLD in the US is remarkably similar at 22% 

(26) and again increases with age (40).  
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1.3.4 Diabetes mellitus 

Approximately 75% of T2D patients have NAFLD (26). And the presence of diabetes has been 

identified as a risk factor for NASH with a 2.6 fold increase in hyperglycaemic patients (41).  It is also 

clear that alterations in liver function play a role in the pathogenesis of T2D (1). A key feature of T2D 

is hyperglycaemia and this is generally caused by a combination of peripheral resistance to insulin 

action and inadequate insulin secretion by β-cells (42).  However B-cell dysfunction can lead to T2D in 

the absence of peripheral resistance but B-cell dysfunction or a failure of β-cell compensation must 

occur to get T2D from peripheral insulin resistance (42). The incidence of T2D has increased rapidly in 

parallel with increasing levels of obesity and the MetS. In 2007-8 721, 000 people were reported as 

having type 2 diabetes in Australia (43). The complications of this disease are severe and include 

damage to kidneys, eyes, and blood vessels.  It also contributed to 14, 3000 deaths in Australia in 

2009 as either a direct cause or associated cause (43). Cardiovascular events such as heart 

attacks,and cerebrovascular incidents are the most common cause of death in long standing diabetic 

patients. These events result from the increased rates of atherosclerosis in these patients, estimated 

to be 3- 7.5 times greater incidence than the general population (42).   

 

Table 1.2. Diagnostic criteria for the metabolic syndrome. 

WHO NCEP:ATPIII IDF 

T2D, Insulin resistance, or 
impaired glucose tolerance 
(IGT) and 2 of; 

 

Waist-to-hip ratio >0.90 in men 
or >0.80 in women 

Serum triglycerides ≥150 mg/dl 
or HDL cholesterol <35 mg/dl in 
men and <39 mg/dl in women 

Blood pressure ≥140/90 mmHg 

Urinary albumin excretion rate 
>20 mg/min or albumin-to-
creatine ratio≥30 mg/g. 

 

 
Three or more of; 
 
 
 
 
 
WC> 40 inches for men, >35 for 
women. 
 
Triglycerides ≥ 150 mg/dl 
 
HDL-C:<40mg/dl for men, 
<50mg/dl for women 
 
BP ≥ 130/85 mm Hg 
 
Fasting plasma glucose ≥ 
110mg/dl 

3 or more of; 

 

 

Waist circumference >102 cm 
(40.2 in) in men and >88 cm 
(35.6 in) in women 

Serum triglycerides ≥150 mg/dl 

Blood pressure ≥130/85 mmHg 

HDL cholesterol <40 mg/dl in 
men and <50 mg/dl in women 

Serum glucose ≥110 mg/dl 
(≥100 mg/dl may be applicable) 
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1.4 Pathogenesis of NAFLD 

The exact pathogenic mechanisms of NAFLD and NASH remain elusive.  The available studies suggest 

that environmental factors such as diet, exercise and/or toxins play a role (9, 44, 45).  In particular 

fructose consumption has been found to be a risk factor for NAFLD (46). As mentioned a genetic 

component is suggested by studies indicating the prevalence of NAFLD varies in different ethnic 

groups and that disease progression varies between individuals with similar risk factors (18, 25, 26). 

On a more basic level, in order to get deposition of triglyceride (TG) in the liver there needs to be an 

imbalance in fat deposition and metabolism, especially of free fatty acids (FFA).   

 

1.4.1 Insulin resistance in NAFLD 

Insulin resistance is an almost universal finding in NAFLD and NASH.  Importantly, it has been shown 

that the elevated insulin levels in states of hepatic steatosis fail to suppress adipose fatty acid flux to 

the liver (7, 47).  As expected liver insulin resistance as occurs in NAFLD and T2D results in 

uninhibited hepatic glucose production (48).  Unexpectedly this failure of insulin to suppress hepatic 

glucose production occurs on a background of increased hepatic lipogenesis and steatosis (49).  The 

mechanism(s) for this disconnect are unclear.  In the setting of complete insulin resistance in 

hepatocytes, that is in mice with liver specific knockout of the insulin receptor (LIRKO), there was 

increased inappropriate gluconeogenesis and decreased lipogenesis, suggesting either that insulin 

resistance seen in metabolic disease must occur downstream of the insulin receptor or that complete 

insulin-resistance results in other compensatory changes (48).  The idea that a disconnection of 

insulin effects could exist was confirmed in studies of patients with mutations disrupting either 

insulin receptor or AKT2 function (50).  Disruption of insulin receptor function exhibited low serum 

TG and low liver fat content whereas those with AKT2 had elevated liver fat, and 

hypertriglyceridemia (50). Studies using short hairpin RNAs (shRNAs) directed against IRS-1 and IRS-2 

in the liver suggested that IRS-1 and IRS-2 may play complementary roles in liver metabolism.  

Results suggested that IRS-1 mediated insulin suppression of hepatic glucose production, while IRS-2 

was involved in suppression of lipogenesis (51).  However, it has also been reported that in ob/ob 

mice there was a reduction in IRS-2 mRNA alongside increased SREBP-1c mRNA (52). It has been 

proposed that the ‘SREPB1-c’ mediated arm of the insulin signalling pathway remains insulin 

sensitive while the PI3k/Akt arm mediating the gluconeogenic effects becomes resistant to insulin 

mediated suppression.  

 

The mechanisms of fat accumulation in the liver are thus two-fold.  There is both increased delivery 

of FA to the liver via insulin resistant adipocytes and increased lipogenesis within the liver itself (47).  
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The contributions of liver fat from these 2 sources were quantified by Donnelly et al (2005).  It was 

found that the plasma NEFA pool accounted for 60% of liver TG suggesting that peripheral insulin 

resistance and increased FA flux to the liver plays a major role (7).  Importantly the uptake of fatty 

acids into the liver is not regulated and as a result plasma FA levels have a direct impact upon liver 

steatosis.  In addition de novo lipogenesis (DNL) in the liver is also dysregulated in hyperinsulinaemic 

subjects with NAFLD. In hyperinsulinaemic NAFLD patients DNL accounted for 26% of liver TG (7). 

Measurement of VLDL-TG is reported to parallel DNL. In healthy human subjects DNL has been 

reported to contribute as little as 5% (VLDL-TG) in the fasted state and is elevated to 23% (VLDL-TG) 

after feeding (53).  In NAFLD patients this DNL was elevated at fasting and did not undergo further 

elevation in the fed state (53).  Interestingly the export of fatty acids in the form of VLDL is also 

altered in NAFLD patients.  It has been found that apoprotein B-100 which is required for VLDL 

synthesis is decreased in patients with NAFLD compared to healthy controls and may also contribute 

to steatosis in these patients (54).  It is worth noting that there is a compensatory increase in B-

oxidation of fatty acids in both animal (55, 56) and patients with NASH (57-59).  Clearly this 

upregulation is unable to reduce hepatic steatosis sufficiently and may actually contribute to the 

damage caused by fatty acid accumulation in the liver (60). Hepatic triglyceride content is also an 

indicator for whole body insulin action.  A recent study suggests that hepatic triglyceride content is in 

fact a better predictor for insulin action in liver, skeletal muscle and adipose tissue insulin action than 

visceral fat (61). 

 

1.4.2 Animal studies. 

 

In line with the mechanisms of fat accumulation in the liver it is clear from the literature that diets 

rich in fat or sugar can lead to fatty liver and obesity in humans and animal models (9, 62-64).  

Interestingly it is also reported that there may be increased delivery of LPS from the gut to the liver in 

obesity, which could contribute to progression to NASH (see below) and increased steatosis through 

inflammation leading to insulin resistance (65-67). The Ob/Ob and Db/Db mouse models contain a 

spontaneous mutation in the leptin gene and receptor respectively rendering these mice 

hyperphagic, inactive, obese and diabetic.  These mice exhibit marked hepatic steatosis showing that 

increased dietary intake is sufficient to induce steatosis.  However, these mice do not progress to 

NASH unless a secondary insult is provided (see below for a discussion of NASH) (68).   

 

There have been a number of knockout mice generated which give more clues to the potential 

aetiology of NAFLD.  The importance of SREBP-1c and ChREBP has been confirmed in this manner.  As 
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might be expected deletion of these key transcription factors resulted in a reduction in lipogenic 

genes (14, 69).  Ob/Ob mice have a mutation in the the leptin gene rendering them leptin deficient, 

these mice exhibit hyperphagia, obese and diabetic (70, 71). It has been found that Ob/Ob mice x 

SREBP1 -/- mice had decreased hepatic steatosis (69).  To add to the involvement of SREBP-1c 

hepatic specific over expression also produces steatosis, however again steatohepatitis was not 

evident although ALT levels were raised (72). SREBP1-c and SREBP-2 expression are also induced by 

HFD feeding of C57BL/6 mice (73).   

 

In addition there are examples of mice with defects in fatty acid oxidation which develop steatosis. 

The peroxisome-proliferator-activated receptor (PPAR) family includes PPAR-α, PPAR-δ and PPAR-γ, 

the PPARs have different tissue distributions with distinct and overlapping functions (74, 75).  In 

general this family is involved in regulation of genes involved in fatty acid metabolism (76).  PPAR-α is 

most highly expressed in tissues such as the liver, heart, and brown fat.  PPAR-αis activated by 

ligands including fatty acids and fenofibrate (74). PPAR-α activation results in upregulation of genes 

involved in fatty acid transport and genes involved in β-oxidation in mitochondria and peroxisomes 

(77). PPAR-α in particular has been shown to play a crucial role in liver lipid metabolism (78, 79). The 

PPAR-α knockout mouse line does not accumulate fat under normal fed conditions but fail to up-

regulate fatty acid oxidation when delivery to the liver increases during fasting and develop severe 

steatosis, without additional signs of NASH (78). Another example is the mitochondrial trifunctional 

protein (MTP) heterozygote mouse.  MTP is reported to regulate β-oxidation in the mitochondria. 

Heterozygote mice exhibit hepatic steatosis, raised ALT and lower antioxidant levels consistent with 

oxidative stress, in the absence of NASH (80). 
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1.5 NASH Pathogenesis 

As suggested by the above models, many factors are known to induce NAFLD, but less is known 

about the factors leading to progression to NASH.  The two-hit hypothesis has been proposed to 

describe the mechanism of progression from simple NAFLD to NASH (81, 82).  In this model it is 

believed that FA deposition in the liver is a “first hit” which sensitises hepatocytes to future insults.  It 

is thought that NASH develops as a result of the liver’s inability to deal with cumulative secondary 

insults, particularly oxidative stress (68).  For example Ob/Ob mice can progress to NASH if the mice 

are injected with a small amount of lipopolysaccharide (LPS), or administered ethanol at 

concentrations leading to no negative effects in control animals (83, 84).  A study by Yamaguchi et al 

2007 would suggest TG synthesis itself may actually be protective.  In this study inhibition of TG 

synthesis by diacylglycerol acyltransferase 2 (DGAT2) antisense oligonucleotide led to reduced 

hepatic steatosis in a model of diet induced obesity (85).  However, DGAT2 antisense oligonucleotide 

treatment combined with the MCD diet resulted in increased cytochrome P450 2E1 (CYP2E1, 

discussed below), markers of oxidant stress, inflammation and fibrosis (86). 

 

A potential mechanism for the potential elimination of excess fat in NAFLD is to increase 

mitochondrial oxidation of FA’s in the mitochondria.  Increased fatty oxidation has in fact been 

demonstrated in ob/ob mice and in patients with NASH (55, 56, 87).  Increased hepatic FA could 

clearly lead to increase FA oxidation on its own, however upregulation of the key β-oxidation gene 

CPT-1 has also been found in animal models of diabetes (55, 88).  Interestingly PPAR-α has also been 

found to be up-regulated in a number of animal models of diabetes, its targets being genes involved 

in both mitochondrial and peroxisomal fatty acid oxidation (including CPT-1) (78, 89).  As expected 

from increased PPAR-α expression there is a proliferation of peroxisomes in patients with fatty liver 

(90).  Uncoupling protein-2 (UCP-2) as the name suggests uncouples the respiratory chain from the 

membrane potential leading to increased catabolism at the expense of ROS production and is also a 

target of PPAR-α (91, 92). Accompanying the increased production of ROS it has been found that 

patients with steatosis have increased expression of endotoxin receptors in Kupffer cells (83).  This 

increased expression leads to increased sensitivity of Kupffer cells to activation with TNF-α and ROS 

release (60, 93). Importantly products of lipid peroxidation due to ROS and ROS themselves impair 

mitochondrial function (60).  Added to this TNF-α which is increased in obese patients also increases 

mitochondrial permeability and ROS generation (60).  This increased oxidation coupled with 

increased ROS and damaged mitochondria are believed to lead to a vicious cycle where increasingly 

damaged mitochondria are less able to quench ROS produced by both increased FA delivery and a 

damaged respiratory chain.   
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Oxidative stress has been implicated in the progression of a number of liver diseases (94).  In 

concordance with the idea that increased ROS plays a role in NASH, markers of oxidative stress have 

been demonstrated in the MCD model of NASH including decreased glutathione (GSH) and S-

adenosylmethionine (95).  Oxidant stress has also been indicated in humans by mitochondrial DNA 

depletion and structural alterations in patients with steatohepatitis (57, 60, 96).  As mentioned it is 

believed that fatty acid oxidation in the mitochondrion itself is a major source of reactive oxygen 

species (ROS) in NAFLD.  It is also thought that the oversupply of FA overwhelms the B-oxidation 

capacity of the mitochondria and oxidation takes place through peroxisomes and in the endoplasmic 

reticulum (97).  Although oxidation of FA in the mitochondria produces some ROS and superoxide 

anions the majority are safely dissipated in healthy mitochondria.  On the other hand oxidation of FA 

in extra-mitochondrial sites generate ROS without the capacity to deal with these reactive products 

hence the oxidative stress of the hepatocyte increases (97).  When the antioxidant capacity of the 

cell is overwhelmed cellular macromolecules are damaged including DNA and membranes leading to 

the release of proinflammatory cytokines (18).  This proapoptotic state and further loss of 

mitochondrial function exposes the cell to further oxidative stress. Concordantly mice on the 

methionine/choline-deficient model (MCD) and ob/ob mice show increased ROS production and 

mitochondrial damage (98).  

 

Evidence suggests that impaired β-oxidation and increased ROS an important mechanism of MCD 

induced liver inflammation and fibrosis (99).  It is also evident in MCD, NASH patients and alcoholic 

steatohepatitis patients there is an upregulation of the cytochrome P450 2E1 (CYP2E1) enzyme 

which again would tend to increase ROS production (100). CYP2E1 is a member of the cytochrome 

P450 family of proteins which function in metabolism of xenobiotics and endogenous substrates 

(101).  It is responsible for the metabolism of substances such as alcohol, paracetamol, fatty acids 

and steroids. Expression of CYP2E1 is induced by both alcohol and high fat diet feeding (102, 103).  It 

has been proposed that increased CYP2E1 activity leads to increased production of ROS as a by 

product, which further adds to oxidative stress in NAFLD and NASH (101).  The activity of the nuclear 

factor kappa B (NFκB) family of transcription factors has been linked to liver inflammation and insulin 

resistance in models of obesity (104, 105). NFκB members regulate a wide variety of genes from 

those involved in cell growth and development to inflammation and the immune response (106, 

107).  Inactive complexes of NFkB and IκB reside in the cytoplasm, activation in the majority of cases 

involves phosphorylation of IκB by an IκB kinase (IKK) and subsequent degradation which releases 

NFkB complexes and allows transcriptional activity.  IKK may be activated by a range of stimuli 
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including cytokines, free fatty acids and high concentrations of glucose (108).  NFkB activity appears 

to be upregulated in models of NASH and obesity where in this context it appears to mediate liver 

inflammation and insulin resistance (104, 105, 109). In addition CYP2E1 is also known be up-

regulated by NFkB activation (110, 111).  It has been shown that ROS mediated lipid peroxidation 

leads to the generation of longer acting and more inflammatory reactive aldehydes such as 

malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE). HNE is known to act as a chemoattractant 

for neutrophils (112). Increased ROS generation in the liver then leads to increased expression of 

transforming growth factor B (TGF-β), TNF-α and IL-8 which further attract inflammatory cells which 

contribute to liver inflammation (60).  Fas ligand is also upregulated on ROS damaged hepatocytes 

which would lead to increased apoptosis or necrosis of these cells in NASH (60). 

 

TNF-α is believed to play a central role in the pathogenesis of NASH and there have been studies 

which indicate TNF polymorphisms which lead to increased TNF production may lead to increased 

NASH progression (113).  Indeed NAFLD and NASH are associated with increased levels of TNF-α as is 

obesity, the mechanisms of which are discussed later (113, 114).  In addition it has been found that 

serum levels of TNF-α, IL-6 were increased in NASH patients compared to those with simple steatosis 

(115).  Increased TNF-α can arise from a number of sources, including fat ladened adipocytes, fat 

ladened hepatocytes and Kupffer cells (114, 116).  This increased TNF-α leads to increased 

hepatocyte damage and apoptosis and hence perpetuates the inflammation associated with the 

pathology of NASH. 
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1.6 Liver fibrosis 

Liver fibrosis from NASH is increasingly becoming a cause for liver transplant.  Liver fibrosis is the 

result of chronic damage to the liver with concurrent deposition of extracellular matrix (ECM) 

proteins and occurs in most types of chronic liver disease (2).  Histological progression of fibrosis in 

NASH has been found to be between 32 and 37 %, however regression appears to also be possible 

and occurs in 18-29% (26).  Obesity, diabetes and established fibrosis are associated with progression  

(26). Increasing NASH activity also predisposes to fibrosis development. The central pathogenic 

process is progressive fibrosis with distortion of the normal liver architecture (2).  In healthy liver 

collagens I and III are concentrated in portal tracts and around central veins and occasionally in the 

Space of Disse.  The collagen supporting hepatocytes in the space of Disse is composed of type IV 

collagen.  With fibrosis progression collagen I and III are progressively deposited within the liver 

parenchyma disrupting blood flow and hepatocyte function (117).  It has been estimated that over 10 

years 5-20% of NASH patients may progress to cirrhosis (26).  Cirrhosis itself is defined by bridging 

fibrous septae linking portal tracts and portal tracts with hepatic veins. Parenchymal nodules which 

contain proliferating hepatocytes encircled in fibroblasts are also a feature (2). Finally, disruption of 

the architecture of the whole liver occurs.  In particular secretion of proteins such as albumin, 

clotting factors and lipoproteins are greatly impaired. The complications of liver cirrhosis include 

ascites, renal failure, hepatic encephalopathy and variceal bleeding (117).   

 

The major source of collagen in liver fibrosis, in both animal and human liver fibrosis, has been found 

to be hepatic stellate cells (HSCs) (2). HSCs are found in the Space of Disse and serve as a major store 

of vitamin A. HSC undergo rapid activation in response to profibrogenic cytokines released from 

hepatocytes and Kupffer cells (KC), the most potent being TGF-β. Platelet derived growth factor 

mainly derived from KCs also plays an important role as do ROS (118). Upon activation these cells 

change from a lipocyte phenotype to a transitional myofibroblast phenotype, with increased capacity 

for ECM production (119).  Activated HSCs also secrete inflammatory cytokines such as TGF-β, MCP-

1, IL-10, RANTES, IL-8, TNF-α and cause recruitment and activation of lymphocytes (118). It is 

predominately the cytokines secreted by activated KCs, the macrophage of the liver, and other 

inflammatory cells that activated these cells (117). 

 

KCs as mentioned are the macrophage of the liver and represent 80-90% of all tissue macrophages in 

the body (120).  KC are responsible for the elimination of bacteria, old red blood cells and foreign 

antigens (121).  Like other macrophages KCs sense danger signals from cells and microbes and 

respond by activation.  KC secrete cytokines, ROS, nitric oxide (NO) and recruit immune cells such as 
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natural killer (NK) T cells, NK cells and macrophages (122).  As such KC may escalate the inflammatory 

response in NAFLD and increased CD68 positive KC correlate with histological severity of human 

NAFLD (123). Further the pattern of KC distribution is altered in NASH from diffuse to perivenular 

aggregates (124).  To add to the importance of KC in liver injury ‘selective’ deletion of large cells by 

gadolinium chloride attenuates liver injury from thioacetamide, CCl4 and alcohol. Clondrate 

elimination of macrophages also reduces steatohepatitis from alcohol and MCD deficiency diet (122).  

However, there were also alterations in cytokines which could interfere with regeneration (125, 126).  

Correspondingly, a paper by Duffield et al (2005) demonstrated the importance of KC in the 

processes of both inflammation and resolution of fibrosis (127).  In this paper a model was developed 

which allowed for selective deletion of macrophages via way of expression of diphtheria toxin 

receptor in CD11b cells.  Diphtheria toxin was then added at different phases of liver fibrosis either 

during progression of fibrosis (during CCl4 treatment) or in the recovery phase (after cessation of 

CCL4 treatment).  Deletion of macrophage cells during the progression phase resulted in decreased 

fibrosis and fewer activated HSCs.  Macrophage deletion in the recovery phase of fibrosis on the 

other hand lead to persistence of fibrosis and with a failure with 50% more collagen III in the livers of 

mice with macrophage depletion 7 days after the recovery phase.  Importantly it was found that 

macrophages in liver injury were associated with high levels of TGF-β in response to injury (127, 128). 

 

A key molecule in the process of fibrosis is transforming growth factor β (TGF-β) (129).  In the liver 

TGF-β can arise from injured hepatocytes, Kupffer cells or HSCs (118).  TGF-β is a pleotrophic 

molecule mediating anti-inflammatory and immunomodulatory roles. Homozygous KO mice die due 

to leukocyte infiltration and inflammation of multiple organs (130).  Studies using overexpression of 

TGF-β or inhibition of TGF-β have demonstrated that in the context of liver injury TGF-β is profibrotic 

(131, 132).  Importantly TGF-β released form hepatocytes and macrophages activates HSCs (117).  

TGF-β mediates its effects through increasing the expression of connective tissue growth factor 

(CTGF) and increasing the expression of metalloproteinase inhibitors (TIMPs) and downregulating the 

ECM degradative enzymes matrix metalloprotinases (MMPs) (133-135). CTGF has been found to play 

a key role in mediating the effects of TGF-β on fibrosis (136). Further the level of CTGF can induce 

TGF-β in a feed forward loop. siRNA mediated disruption of CTGF resulted in significantly reduced 

HSC activation and liver fibrosis.  An important finding has been that liver fibrosis is potentially 

reversible, however the treatment for patients with advanced cirrhosis currently require transplant.   
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1.7 Diabetes and liver disease 

A key feature linking NAFLD, NASH, MetS, obesity and T2D is insulin resistance (35, 42, 137, 138).  

Importantly insulin resistance in the liver and periphery is known to play a role in NALFD and NASH 

and has been found to contribute to the severity of NAFLD. Normally glucose homeostasis is tightly 

regulated, both by controlling glucose production in the liver and glucose uptake and use in the 

tissues (42).  The hormone insulin is crucial in regulation of these processes.  Insulin is generated in 

the β cells of the pancreas.  Upon stimulation with elevated blood glucose levels after a meal the β-

cells release insulin.  Intestinal hormones, certain amino acids, and the autonomic nervous system 

can also stimulate insulin release, however elevated blood glucose is the most important stimulus (1, 

42). 

 

Insulin acts to control serum levels of glucose, and regulates lipids and amino acids.  Insulin receptors 

are present on all cell types, and are expressed at high levels in important tissues for metabolism 

including the liver, adipocytes and skeletal muscle (139).   Insulin is an anabolic hormone, acting to 

increase uptake and storage of these building blocks in times where they are in excess in the serum, 

while decreasing their synthesis (see Figure 1.10).  The principal effect of insulin is to increase 

glucose uptake and storage.  Glucose is stored as glycogen in striated muscle and liver and 

triglycerides in adipocytes. Insulin also controls lipid metabolism acting to increase storage and 

inhibit release of fatty acids by adipose tissue.  Insulin also promotes uptake of amino acids and their 

incorporation into protein (42).   

 

 

Figure 1.10 Insulin Action on Tissues.   
General insulin action on adipose tissue, muscle and the liver are shown. 
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Insulin resistance is defined as resistance to the effects of insulin on glucose homeostasis (42). That 

is, resistance to the effect of insulin on metabolism or storage of glucose. Insulin resistance is often 

detected years before the development of T2D, is a key component of the metabolic syndrome and is 

a good predictor for the future development of T2D (35, 140). This insulin resistance combined with 

β-cell dysfunction leads to elevated blood glucose levels through a decrease in insulin mediated 

glucose uptake in tissues such as muscle and adipose and a failure to suppress gluconeogenesis in 

the liver (141).  Interestingly an index incorporating insulin resistance and insulin secretion was found 

to be the best predictor for future T2D (140). Insulin resistance results in detectable alterations in the 

insulin signalling pathway within target tissues including; decreased insulin receptor protein, 

decreased tyrosine phosphorylation (activation) of the insulin receptor and decreased levels of 

activated downstream signalling intermediates (42, 142, 143). Insulin signalling and changes in insulin 

resistance are shown in Figure 1.11 and Figure 1.12. 

 

 

Figure 1.11 Insulin signalling.   
The insulin receptor is a tyrosine kinase that undergoes autophosphorylation upon insulin binding. The 
receptor in turn catalyses the phosphorylation of the IRS proteins, Cbl and Shc. These activated proteins then 
interact with binding partners resulting in signaling pathway activation and alterations in cellular functions 
Casistas B-Lineage lymphoma protein (Cbl), Insulin receptor substrate (IRS), Son of Sevenless (SOS), Growth 
factor receptor bound protein 2 (Grb2), Protein tyrosine phostphatase 1 β (PTP1β), CRK SH3-binding GNRP 
(C3G), Glucose transporter type 4 (Glut4), Sterol Regulatory Element-Binding protein (SREBP), 
Phosphatidylinositol 3-kinase (PI3K), Phosphatidylinositol -3,4,5-phosphate (PtdIns(3,4,5)P3), phosphoinositide-
dependent protein kinase-1 (PDK1), glycogen synthase kinase 3 (GSK3), mammalian target of rapamycin 
(mTOR).  
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Figure 1.12 Alterations to signalling in insulin resistance.   
Activation of PKCε (not shown) by increased lipid leads to impairment of IR activation and inhibitory IRS-1 
serine phosphorylation.  PKC ζ can also bind to and sequester AKT2.  Activation of inflammatory pathways 
result in serine  phosphorylation of IRS proteins and insulin resistance as discussed in section 1.9.2. Casistas B-
Lineage lymphoma protein (Cbl), Insulin receptor substrate (IRS), Son of Sevenless (SOS), Growth factor 
receptor bound protein 2 (Grb2), Protein tyrosine phostphatase 1 β (PTP1β), CRK SH3-binding GNRP (C3G), 
Glucose transporter type 4 (Glut4), Sterol Regulatory Element-Binding protein (SREBP), Phosphatidylinositol 3-
kinase (PI3K), Phosphatidylinositol -3,4,5-phosphate (PtdIns(3,4,5)P3), phosphoinositide-dependent protein 
kinase-1 (PDK1), glycogen synthase kinase 3 (GSK3), mammalian target of rapamycin (mTOR).  

 

In metabolically healthy individuals an increase in insulin resistance in the tissues is countered by an 

increase in insulin release in the pancreas and an increase in β-cell function and / or β-cell mass 

(144).  In individuals where the β-cells are unable to compensate for increasing insulin resistance T2D 

develops.  Interestingly this event is accompanied by β-cell apoptosis in animal models and reduced 

β-cell mass has been demonstrated in both animal models of diabetes and in humans with diabetes 

(145, 146) .   

 

Importantly liver metabolic dysfunction is known to occur in T2D.  Increased fat accumulation in the 

form of NAFLD and liver fibrosis from NASH are known to have increased prevalence in diabetic 

individuals as mentioned previously (147, 148).  In a recent mechanistic study it was found that HFD 

feeding of mice alone was sufficient to increase hepatic lipid and induce hepatic macrophage 

infiltration, two features of NASH (149).   However, induction of diabetes via streptozotocin 

increased fibrosis and was required to increase collagen in the perisinusoid space. Intriguingly 
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concurrent treatment with insulin reduced fibrosis, this indicated that β-cell failure and progression 

to overt diabetes could lead to NASH progression.   

  

Apart from being affected by diabetes a dysfunctional liver actively contributes to the diabetic 

phenotype through its action on blood glucose and serum lipid.  Indeed diabetes is known to be 

associated with both inappropriate hepatic glucose production (HGP) when glucose is normal or even 

raised, and impaired insulin-mediated suppression of HGP (49, 150, 151). The increased HGP 

observed in diabetic patients occurs at lower insulin levels (150pmol/L) suggesting that increased 

HGP is more important in raising bgls in fasting conditions (152).  Hence inappropriate HGP in turn 

can result in elevated fasting glucose, another key feature of T2D. Moreover, HGP is higher in 

diabetic patients even after controlling for higher circulating levels of the HGP-inducing hormone 

glucagon, which is also present in diabetic patients (153, 154).  Hepatic glucose production can come 

from gluconeogenesis or glycogenolysis, both of which are increased in severely diabetic patients 

(154). Although gluconeogenesis may be increased only in response to increased glucagon as after 

clamping studies with equivalent insulin, elevated blood glucose and glucagon only glycogenolysis 

was still raised.   Importantly this increase in glycogenolysis occurred in mildly diabetic and severely 

diabetic patients (154).  In addition hepatic glucose uptake is decreased in diabetic patients and may 

contribute to elevated blood glucose in this manner (152). Importantly decreased hepatic uptake was 

observed at higher insulin concentrations of 300p/mol/L (155).  Further evidence suggested that 

decreased uptake in the liver accounts for 1/3 of the decrease in glucose disappearance in people 

with T2D. It has been found that the activity of the uptake rate limiting enzyme GK activity is 

decreased in the liver of T2D patients which may account for decreased uptake (156). 

 

Dyslipidemia is a recognized feature of the metabolic syndrome and T2D where it is characterized by 

increased serum triglycerides (TG) and low high density lipid cholesterol, often with pronounced 

post-prandial hypertriglyceridemia (48, 157, 158) thereby contributing to the increased risk of 

cardiovascular complications in people with diabetes or the metabolic syndrome.  Overproduction of 

VLDL TG is a key feature in insulin resistant and diabetic patients and is driven by increased FA flux 

from insulin resistant adipocytes, increased VLDL uptake, increased chylomicron remnants and 

increased de novo lipogenesis (157, 159).  It has been shown that increased FA levels lead to 

increased VLDL secretion (160).  However, insulin resistance in the liver is also associated with failure 

of insulin to stimulate ApoB degradation and this is accompanied by increased VLDL synthesis in 

humans and in animal models of insulin resistance (161-165). Thereby the insulin resistant liver 
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actively increases VLDL TG levels in the serum of diabetic patients. The systemic effects of a insulin 

resistant liver is shown in Figure 1.13. 

     

 

Figure 1.13 The outcome of hepatic insulin resistance.  
The insulin resistant liver continues gluconeogenesis and glycogenolysis at lower insulin levels resulting in 
increasing fasting blood glucose. Lipogenesis is increased basally and fails to decrease VLDL export in response 
to insulin. 
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1.8 Obesity, inflammation and insulin resistance 

One culprit identified as mediating insulin resistance is obesity.  Although not all obese individuals 

develop metabolic derangements the majority are insulin resistant (34).  In particular visceral obesity 

has been strongly linked with insulin resistance (138).  The effect of obesity on insulin resistance is at 

least partially mediated through an increase in free fatty acids (FFA) (61, 166).   Population studies 

have clearly demonstrated an inverse correlation between fasting plasma FFAs and insulin sensitivity. 

Correspondingly, acute infusions of FA have been shown to induce insulin resistance (61, 166).  The 

role of inflammation in obesity has emerged as an important factor in mediating disease in the last 

decade (167). Obesity and the MetS have been associated with chronic low grade inflammation as 

measured by altered cytokine production, increased acute phase proteins and activation of 

inflammatory pathways (168).  The pro-inflammatory cytokine TNF-α is also known to mediate 

insulin resistance in a number of rodent models (169, 170).  It has been documented that individuals 

with the metabolic syndrome have increased levels of TNF-α mRNA in white adipose tissue (WAT) 

and increased serum levels of TNF-α (171, 172). In addition it has been found that the expression of 

many other cytokines including IL-6, IL-1β and IL-8 are elevated in models of obesity or 

hyperglycaemia (167).  The production of the adipocyte derived anti-inflammatory molecule 

adiponectin is also decreased (173).  As discussed, in NAFLD and NASH TNF-α and inflammation in 

the liver play an important role in mediating disease.  Correspondingly it was found that serum levels 

of TNF-α, IL-6 were increased in NASH patients compared to those with simple steatosis (115).  It is 

now recognised that visceral adipose tissue is an active endocrine organ regulating both metabolism 

and inflammation (174). Interestingly, it has been documented that there are increased numbers of 

macrophages in obese WAT (175).  Further studies have suggested that macrophage infiltration may 

be a key component of the inflammatory phenotype of the adipose tissue (176). Intriguingly it has 

also been recognised by transcriptional profiling that macrophages and adipocytes are in fact closely 

related, and there has even been evidence to suggest transdifferentiation of adipocytes into 

macrophages (177, 178).  

 

1.8.1 The innate immune system in obesity induced inflammation 

 

It is thought that dysregulation of the macrophages of the innate immune system which populate 

metabolic organs play a key role in the chronic low grade inflammation which link diet-induced 

obesity to insulin resistance (179, 180).  Macrophages are the sentinels of the immune system and 

assume different morphological forms and functions in response to environmental signals relating to 

microbes and tissue damage (181). In this manner the macrophage senses the environment and 
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orchestrates a response to eliminate infectious agents and/or repair damage.  Supporting the 

importance of macrophages in metabolism a number of myeloid and macrophage specific knockout 

mice which alter macrophage function have been found to have altered insulin resistance and 

changes in glucose metabolism (182-186).  The idea of two activation states of macrophages has 

been a useful concept and defines macrophages into two polarised populations characterised by 

different markers and functions (187).  Although, in reality macrophages display a range of gene 

expression patterns along the continuum.  The classical inflammatory macrophage activation state 

termed M1 is stimulated by exposure of macrophages to TH1 cytokines like IFNγ and bacterial 

products. M1 activated macrophages secrete high levels of cytokines TNF-α, IL-6 and IL-12 and also 

have increased bactericidal activity with upregulation of inducible nitric oxide synthase (iNOS) to 

catabolise production of NO.  The alternative activation state M2 is stimulated by TH-2 cytokines like 

IL-4 and 13. M2 activated macrophages have anti-parasitic functions with decreased TNF-α, IL-6 and 

IL-12 in relation to M1 macrophages and are also thought to function in tissue repair while being 

thought of as anti-inflammatory (188).   

 

Adipose tissue of lean mice is populated by macrophages with alternative activation markers such as 

arginase 1 (Arg1) and CD301 (189).  It has been shown that macrophages isolated from animals with 

diet-induced obesity have increased inflammatory properties such as elevated IL-6 and iNOS (189, 

190).  Further work suggests that macrophages infiltrating adipose tissue during weight gain 

predominantly express a classically activated phenotype (191, 192).  Correspondingly, genetic 

deletion of TNF-α or iNOS reduced insulin resistance in obese mice (193, 194).  It has also been 

shown that it is the macrophage and pre-adipocyte fraction of adipose tissue which is responsible for 

the majority of cytokine expression (176).  Furthermore, in this fraction it is the macrophages which 

seem to be responsible for the majority of cytokine production.   Correspondingly obesity induced 

macrophage recruitment is associated with elevated MCP-1 expression in adipocytes of db/db mice 

(195).  Correspondingly transgenic upregulation of MCP-1 expression in adipocytes resulted in 

increased macrophage recruitment and insulin resistance, while acute expression of a dominant 

negative mutant had the opposite effect (195, 196). An opposing study however showed that mice 

lacking MCP-1 had similar levels of macrophage recruitment to adipose tissue in response to HFD, 

and that these mice had mildly impaired glucose tolerance and increased serum insulin compared to 

controls (197). This suggested that MCP-1 may have other effects apart from macrophage 

recruitment and that compensation can occur.  Another molecule which may be involved is 

osteopontin (OPN).  OPN was increased in serum of HFD mice and displayed elevated macrophage 
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expression (198).  Mice lacking OPN had improved metabolic parameters with no change in weight 

gain and a concurrent reduction in macrophage recruitment to adipose tissue.   

 

There is also evidence of tissue inflammation in islets of T2D patient with corresponding increases in 

cytokines and chemokines (199-201).  In fact immune cell islet infiltration has been found in animal 

models and human patients with T2D, indicating the possibility that tissue inflammation may directly 

impact T2D through impairment of islet function (201).  In line with this data there is an increased 

number of islet associated macrophages after 8 weeks of HFD, and this corresponds to a decrease in 

B-cell function. B-cells express high levels of IL-1β receptor and express this cytokine along with 

resident macrophages (202).   IL-1β is known to be induced by high glucose and along with 

upregulation of Fas contributes to impairment of glucose stimulated insulin secretion (199, 203).  

FFAs have recently been shown to increase IL-1β expression, including oleate, palmitate and stearate 

(202). Interestingly expression of IL-1 receptor antagonist (IL-1Ra) is induced by IL-1β and is a 

mechanism by which the body attempts to dampen down excessive IL-1β signalling.  Correspondingly 

increased IL-1Ra is elevated in prediabetes and obesity with a sharp increase before the onset of T2D 

(204).  It is possible that islet inflammation is exacerbated by infiltrating inflammatory macrophages 

and leads to impairment of islet function.    

 

Research in the past decade has led to some insight as to how classical activation of macrophages 

may be favoured in obesity.  Cells of the innate immune system express receptors for common 

microbial ligands which allow them to quickly detect and respond to various infectious agents. TLR4 

is a toll-like receptor which responds to lipopolysaccharide (LPS) which is a cell wall component in 

gram negative bacteria (205). The receptor also responds to a number of other ligands including 

fungal mannans, parasitic phospholipids, viral envelope proteins and host heat shock proteins. 

Ligation of this receptor leads to inflammatory signalling via induction of nuclear factor kappa-light-

chain-enhancer of activated B cells (NFkB) to trigger release of M1 macrophage cytokines such as IL-

6, TNF-α and IL-12, and iNOS (206). Importantly it has been shown that TLR4 responds to saturated 

fatty acids in a dose dependant manner (207).  These include palmitic, myristic and stearic fatty acids 

and free fatty acids are known to be increased in obesity (208, 209).  Indeed mice lacking TLR4 have 

blunted inflammatory responses to FFA and were protected from FFA infusion induced insulin 

resistance, although the insulin sensitising phenotype did not occur in male mice suggesting gender 

effects. Male mice did however have less inflammatory cytokine expression in adipose and liver 

(207).   
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Importantly while an obesogenic diet rich in saturated fats is thought to lead to inflammation 

through classical macrophage activation, alternatively activated macrophages are favoured in 

adipose tissue of lean mice and by diets containing monounsaturated fatty acids like oleic acid (189, 

210).   Studies have shown PPAR activation is required to maintain alternative activation.  PPAR-δ 

activation by oleic acid alongside IL-4 stimulation has also been shown synergise to drive alternative 

activation of macrophages (210). It was also shown that in mice lacking PPAR-γ in myeloid cells there 

were decreased numbers of alternatively activated macrophages and had impaired glucose 

tolerance, increased insulin resistance and diet induced obesity on HFD (186).    Mice lacking PPAR-δ 

in haematological cells lead to increased diet induced obesity and insulin resistance. It was further 

shown that the alternative activation of KCs in the liver was affected (210).  While mice lacking PPAR-

δ in myeloid cells were again predisposed to increased insulin resistance and reduced numbers of 

alternative activation of adipose macrophages (211).  Interestingly macrophages also accumulate in 

adipose tissue in response to weight loss (212).   In this case macrophages did not promote 

inflammation but lipolysis and did not express mRNA for alternative activation, suggesting another 

phenotype of macrophages in this situation.  In conjunction with stimulation of TLR4 leading to 

increased inflammation and potentially decreased PPAR activation leading to decreased alternative 

activation, cellular stress in response to nutrient overload can also mediate insulin resistance and 

inflammation in metabolic parenchymal and immune cells.   

 

 

1.8.2 Common intracellular pathways of insulin resistance and inflammation. 

 

A major metabolic consequence of the chronic inflammation that occurs with obesity appears to be 

insulin resistance (137, 167).  This insulin resistance in obese patients can be triggered by increased 

cytokine production from stressed cells and activated immune cells as discussed (108).  In NAFLD and 

NASH inflammatory cytokines such as TNF-α  can arise from fat-ladened adipocytes, hepatocytes and 

the liver Kupffer cells (60, 114, 116).  It is not entirely clear how intracellular stress is detected 

however it seems the endoplasmic reticulum plays a role through the Unfolded Protein Response 

(UPR).  Stress in the form of unfolded protein, hypoxia, infections, toxins, nutrient overload or energy 

deprivation can trigger the response (108). The UPR leads to upregulation of chaperone proteins and 

proteins involved in protein degradation.  The UPR response also leads to inflammatory signals and 

can activate apoptosis if ER homeostasis is not restored (213).  This sustained UPR activation can in 

turn lead to activation of JUN N-terminal Kinase (JNK) via inositol-requiring kinase 1 (IRE1) (214).  

Inflammatory pathways triggered by cytokines and intracellular stress, kinases like (JNK) and IKβ 
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kinaseβ(IKkβ) are activated leading expression of inflammatory genes and in the case of JNK to direct 

serine phosphorylation and inhibition of IRS proteins  (214-216).  More specifically hepatocyte JNK 

can be activated by proinflammatory cytokines, free fatty acids, ROS and pathogens (108).  Not 

surprisingly JNK1 deficient mice are protected from insulin resistance induced by diet and genetic 

models (217).  Correspondingly JNK-1 deficient mice also have decreased expression of TNF-α and IL-

6 in high fat diet induced obesity (217).  Likewise hepatic specific activation of IkkB increased 

inflammation and insulin resistance in this tissue and to a lesser degree systemically, while hepatic 

deletion produced the opposing result in the liver (104, 105).  Reactive oxygen species (ROS) are also 

generated in conditions of ER stress and as discussed are important in mediating cellular damage 

(218).  It is known that high sustained levels of glucose and nutrients themselves can engage the UPR 

and NF-kB pathways and initiate inflammation (219).  Saturated fatty acids have also been shown to 

initiate the UPR in a number of tissues including liver and macrophages (108).  As might be predicted 

from their role activating inflammatory cellular pathways Iκκβ and JNK1 may be required for classical 

macrophage activation in obesity (105).  Mice deficient in Iκκβ in myeloid cells including 

macrophages and neutrophils had lower levels of tissue inflammation after HFD and decreased 

insulin resistance (105). Mice lacking JNK in haemopoetic cells led to decreased hepatic and adipose 

tissue inflammation and increased insulin sensitivity after HFD (220). Interestingly lack of JNK in non-

haemopoetic cells protected mice from obesity.  NAFLD and especially NASH are characterised by 

insulin resistance and inflammation leading to disruption of normal liver functioning, and these 

pathways clearly play a role.  The mechanisms of inflammatory induced insulin resistance are shown 

in Figure 1.14. 
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Figure 1.14 Metabolism and inflammation.  
Impairment of insulin signaling can be induced by cytokines like tumor necrosis factor (TNF). TLR4 and 2 can be 
activated by fatty acids.  Fatty acid binding proteins (FABP) have also been found to activate inflammatory 
response in the presence of saturated fatty acids.  Excess free fatty acids and glucose themselves can activate 
the unfolded protein response in the endoplasmic reticulum. All these activation signals lead to activation of 
Iκκβ or JNK which activate inflammatory pathways and alter the metabolic response through serine 
phosphorylation of IRS1.   
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1.9 ARNT and its partners in metabolic liver disease and diabetes 

 

bHLH-PAS (Basic helix-loop helix / PER/ARNT/single minded (SIM)) homology domain) proteins are 

transcription factors which regulate cellular programs relating to development and physiological 

responses (221).   These functions include cellular responses to hypoxia, circadian rhythm and the 

dioxin response pathway (222).  ARNT and some other family members are ubiquitous, and their 

activity is signal regulated, and they recognise sequences that diverge from the prototypical E-box 

(CANNTG) (223).  These proteins combine a specific partner for an environmental signal with a 

generic partner to mediate different responses.  This family is characterized by a DNA binding region 

adjacent to a helix-loop-helix dimerisation region both of which are required to form a function 

transcription factor (223).  The PAS domain consists of two repeated amino acid sequences of around 

130 amino acids termed PAS A and PAS B, which has been conserved throughout evolution (221). 

When the PAS domain is activated by its environmental ligand the protein conformation is altered 

allowing it to dimerise with a second bHLH/PAS partner and mediate transcription of its target genes.  

The PAS domain also functions to define which bHLH/PAS partners may be selected with PAS A being 

essential for interaction with other bHLH/PAS proteins and PAS B interacting with other classes of 

proteins including HSP90, p23, Ara9 and small molecules (222, 224). 

 

 ARNT acts as a general partner for members of the bHLH/PAS family of transcription factors. It 

heterodimerises with other bHLH/PAS family members including Hypoxia-Inducible Factor-1-α (HIF-

1α), Hypoxia-Inducible Factor-2-α (HIF-2α) and Aryl hydrocarbon Receptor (AhR) to form active 

transcription complexes which regulate genes involved in hypoxic-responses, cell survival, 

proliferation, glycolysis, angiogenesis and response to xenobiotics (225-228). In its inactive state AhR 

is found in the cytoplasm associated with two molecules of heat shock protein 90 (Hsp90), p23 and 

hepatitis B virus associated protein (XAP2/AIP/Ara9) (221).  Following ligand binding the complex 

translocates to the nucleus where Hsp90 is exchanged for ARNT and the complex drives transcription 

of target genes.  The endogenous ligand for AhR remains highly contentious; bile acids and cAMP are 

reported to be potential candidates, while a recent paper points to other ligands in breakdown 

products from cruciferous vegetables (229-231). Each of these putative ligands has obvious relevance 

to the liver.  HIF-1α and HIF-2α are regulated by cellular oxygen content, under normal conditions 

(20%) oxygen the majority of these proteins are rapidly degraded by the ubiquitin-proteosome 

pathway (232).  This degradation is mediated by an oxygen dependent degradation domain (ODD), 

which is distal to the PAS domains.  In the absence of other signals proline residues in the ODD are 
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hydroxylated by prolyl-hydroxylases (PHD1 -3) in the presence of oxygen and iron (233, 234).  These 

hydroxyl motifs act as docking sites for the von Hippel-Lindau tumour suppressor protein (Vhl).  Vhl 

then forms a complex with elongins B and C, Cullin 2 and RBX1 to form a E3 ubiquitin ligase which 

targets HIFs for degradation (235).  Importantly HIF proteins are also hydroxylated at asparagine 

residues by factor inhibiting HIF (FIH) to prevent interactions with co-activators (236).  Although HIF 

levels are decreased in normoxia these factors are expressed basally under normoxia in brain, kidney, 

liver and heart tissue (237).  Interestingly elevation in response to hypoxia shows a different time 

course in different tissues.  It is now known HIF-1α is also stabilized by inflammation, TGF, PDGF, 

EGF, IGF-1 and IL-1β (221, 238-240).  It has also been shown that maximal HIF-1α expression is 

dependent on functional NFKB in fibroblasts and macrophages.  Further that NFKB signaling controls 

HIF-1α mRNA expression under both hypoxic and basal conditions (241). Within the liver cells are 

exposed to a range of oxygen concentrations from 60mmHg in periportal blood to 30-35mmHg in the 

perivenous areas (242).  Correspondingly, expression of enzymes involved in glucose metabolism 

differ according to location in the liver with periportal hepatocytes specialising in oxidative 

metabolism, synthesis of bile and glucose metabolism while perivenous cells take up more glucose, 

synthesize glutamine and metabolise xenobiotics (242).    

 

The first studies showing that ARNT and its partners did in fact play a role in liver function came with 

the characterisation of the AhR knockout mouse. Among many phenotypes this animal displayed 

transient hepatic steatosis, increased hepatocyte apoptosis and fibrosis driven by increased TGF-β 

expression (243-245).  Another study suggested that signalling through AhR may actually sensitise 

hepatocytes to Fas induced apoptosis (246). Interestingly it was further found that the phenotype of 

liver fibrosis was reversed if AhR -/- mice were fed a diet deficient in vitamin A, suggesting retinoid 

excess contributes to fibrosis in these mice (247).  It was suggested this activation may be due to 

excess retinoid accumulation in AhR -/- mice which activated tissue transglutaminase type II in HSCs 

which in turn activated latent TGF-β.  Subsequent studies investigating AhR in liver metabolism 

showed that AhR activation also led to hepatic steatosis (248, 249).  It was found that AhR activation 

led to increased expression of fatty acid translocase (CD36) and this potentially led to preferential 

accumulation of serum TG in the liver.  Interestingly whole body knockout animals also have 

improved insulin sensitivity, glucose tolerance and decreased gluconeogenic and lipid oxidation gene 

expression in the liver (250). 

 

In 2005 and 2010 Gunton et al identified that ARNT and HIF-1α were reduced in the islets of patients 

with T2D (225, 251).  It was further found that β-cell ARNT or HIF-1α deletion in mice resulted in 
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impaired glucose tolerance due to decreased β-cell function, the latter being exacerbated by HFD 

(225, 251).  These experiments hinted at the possibility both factors could play wider roles in tissue 

dysfunction in metabolic disease.  During the course of this thesis it was determined that ARNT 

mRNA is also reduced in the livers of T2D patients (252).  This study found that short term hepatic 

ablation of ARNT using injection of Adenoviral-Cre led to decreased hepatic steatosis.  In addition 

deletion of ARNT was accompanied by an increase in HGP and impaired glucose tolerance (252).  

These studies went on to demonstrate that ARNT mRNA and protein were reduced in the livers of 

mice treated with streptozotocin, a model of type 1 diabetes, showing liver ARNT was actively down-

regulated in a type 1 diabetic milieu.   

 

A number of studies have linked the apneic- episodes of obstructive sleep apnoea with elevation of 

liver enzymes and NASH (253, 254).  This suggested that increased HIF expression may play a role in 

these conditions.  One animal model of increased HIF expression is the Vhl +/- mouse line.  Livers of 

Vhl +/- mice developed steatosis and blood filled cavities and increased areas of increased 

vascularisation (255).  Recently it was shown that acute increases in the level of liver HIF-1α and HIF-

2α induced by complete Adenoviral-Cre mediated deletion of Vhl led to fatty liver together with 

decreased serum glucose and ketone levels, which if left untreated resulted in death (256). This 

phenotype was accompanied by suppressed mitochondrial respiration and could be rescued by 

simultaneous ARNT inactivation (256).  Further studies using a combination of Vhl deletion and 

inactive HIF-1α or HIF-2α mutants showed that steatosis and impaired fatty acid β- oxidation was 

dependent on functional HIF-2α (257).  It was then shown using a model of acute hepatocyte specific 

double deletion of Vhl and HIF-1α or HIF-2α under control of the Cre-ER system, that elevated HIF-2α 

resulted in increased liver inflammation and fibrotic mRNA expression (258).  Interestingly HIF-1α has 

been found to be elevated in a mouse model of alcohol induced steatosis (259).  HIF-1α deletion in 

hepatocytes protected mice from liver steatosis and hepatomegaly following alcohol feeding, and 

from elevated ALT levels following subsequent LPS challenge. The steatotic effects after alcohol 

feeding and LPS challenge were subsequently found to be regulated by hepatocyte MCP-1 (259).  

HIF1-α is also known to regulate the expression of fibrosis inducing factors TGF-β and CTGF, and is 

itself stabilised by TGF-β. In addition hypoxia was found to activate HSCs (260-262).  In contrast to 

the harmful effects of elevated HIFs suggested by these studies HIF-1α accumulation in fatty liver was 

shown to be protective in a model of ischaemia reperfusion injury and also to be required for 

gluconeogenesis in regenerating liver (263, 264).   Hepatic HIF-1α deletion was further shown to 

impair glucose tolerance in animals given a high fat/sucrose diet (265).  



43  

 

As outlined in Section 1.8.1 previous studies have demonstrated an important role for myeloid cells 

in regulating metabolism (182-186). The first evidence that HIF-1α in myeloid cells was impotant for 

innate immune function was demonstrated by Cramer et al in 2003 then others where it was shown 

that myeloid cell specific knockout of HIF-1α impaired acute response in terms of motility, cytokine 

production, bacterial killing, survival, and phagocytosis (238, 266-268). Another link between HIF-1α 

and inflammation is that NF-κB expression has also been found to be crucial for maximal HIF-1α 

mRNA expression, while HIF-1α may also increase levels of NF-κB (241). An important potential role 

for myeloid cell ARNT in liver pathology has been shown by work where ARNT deletion in Kupffer 

cells prevented the upregulation of PDGF-β, VEGF, angiopoetin-1 and MCP-1 (269).  In addition it is 

known that adipose tissue becomes hypoxic in obesity and that macrophages accumulate (270-273).  

A number of studies have used the AP2 promoter to investigate the effect of adipose HIF-1α. These 

studies have shown that increased adipose HIF-1α expression seems to drive adipose tissue 

inflammation and impaired glucose tolerance (274-277). Importantly the AP2 promoter used in these 

experiments is also expressed in macrophages, thus perturbation of HIF-1α signaling in macrophages 

may have contributed to these findings (278, 279). 
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1.10 Wound healing 

1.10.1 Normal wound healing 

The ability of an organism to repair tissue damage is essential to survival.  In mammals the majority 

of tissues are not able to repair damage in a way that completely replicates the original tissue (280, 

281).  In most cases tissue is repaired through healing where the original structure of the tissue is 

restored with some loss of function by way of scarring.  Wound healing in mammals occurs via 

progression through three overlapping phases (1) inflammation, (2) new tissue formation and (3) 

remodelling.   The inflammatory phase occurs immediately after tissue injury and haemostasis is 

generally initially achieved by the formation of a platelet clot which is overlain with a fibrin matrix.  

This clot re-establishes haemostasis, serves as a matrix for cell migration, limits microbial entry into 

the tissue and holds tissue in place so healing can proceed (281, 282).  Platelets play a key role in clot 

formation but also in initiation of the healing response via release of mediators such as platelet 

derived growth factor (PDGF), Epidermal growth factor (EGF) and transforming growth factor beta 1 

(TGFβ1) which serve as chemoattractants and or stimulate epidermal and fibroblast proliferation and 

migration (283-286).  Recent research suggests that another important molecule in initiation of 

wound healing is Hsp90  (287).  This work by Cheng et al (2011) indicates that Hsp90 is released 

early in wound healing in response to tissue damage and stimulates migration firstly of keratinocytes 

then fibroblasts and endothelial cells.  Hsp90α is regulated by HIF-1α which is expressed throughout 

wound healing and is known to also regulate genes involved in angiogenesis (288, 289). 

Correspondingly application of a fragment of Hsp90α greatly accelerated wound healing (287). 

 

Within hours neutrophils appear at the edge of the wound, attracted to damaged tissue in response 

to activation of complement, degranulation of platelets, and bacteria (290).  Neutrophils act to clear 

infection or foreign tissue and then apoptose and are phagcytosed by infiltrating macrophages (291).  

They also deposit basement membrane components as they migrate through the wound (292). 

Monocytes infiltrate the wound and become activated macrophages which dominate the wound by 

72hours.  Macrophages release more growth factors such as PDGF and VEGF which lead to 

granulation tissue formation (281).  Macrophages also release other proinflammatory cytokines such 

as TNF-α,  and  other  molecules like IL-1, TGFβ, and Insulin like growth factor I (IGF-I) which increase 

growth factor expression and further stimulate re-epithelialisation (293, 294). 

  

The second stage of repair fibroblasts, epithelial and endothelial cells migrate and proliferate to fill 

the wound (292).  Hsp90, growth factors and cytokines such as TGF-β,EGF, PDGF, FGF, IL-1, Il-6 
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released from platelets, immune cells (particularly macrophages) and activated endothelium 

stimulate proliferation and migration of cells (294, 295).  Epithelialisation of wounds begins within 

hours and by 3-7 days spurs of epithelial cells from the wound edges have fused in the midline 

beneath the scab to reform a thin epithelial layer.  Epithelial cells migrate through the wound in such 

a manner that they dissect the wound between viable and eschar tissue (281). Subsequently 

epithelial cells proliferate to thicken the epidermal layer and reconstitute the original architecture.  It 

has been shown that hepatocyte growth factor (HGF) signalling in keratinocytes in particular is a 

requirement for normal re-epithelialisation (296).  HGF binds to and activates the MET receptor and 

mice with keratinocyte MET deletion had strongly delayed re-epithelialisation. It was further found 

that the keratinocytes which eventually reformed the epithelial layer contained functional MET and 

thus escaped MET deletion, suggesting an absolute requirement for MET signalling. FGF and EGF 

growth factors also positively regulate epithelialisation (294).  Beneath the regenerating epithelium 

the granulation tissue which began to invade the wound around day 3 fills the incisional space by day 

5 (292). This granulation tissue is composed of fibrous connective tissue with inter-dispersed 

fibroblasts, macrophages and new blood vessels.  By day 5 collagen fibrils begin to branch the 

wound.  Macrophages along with other cell types are thought to supply a continuing source of 

growth factors such as PDGF, TGFβ1 and VEGF which support fibroblast and blood vessel 

proliferation (281, 284, 297).   

 

Fibroblasts  are responsible for the synthesis, deposition, and remodelling of the extracellular matrix 

(292). Fibroblasts gradually replace the provisional matrix of fibrin, fibronectin and hyaluronic acid 

with collagen.  Once sufficient collagen deposition has been achieved cells within the granulation 

tissue undergo apoptosis. During the second week of healing fibroblasts differentiate into 

myofibroblasts, and it is these cells which are key to contraction and compaction of the wound (295).  

Contraction appears to require TGFβ1 and β2 and again PDGF, and progresses when cross linkage 

between collagen filaments is present (298-300).  For contraction to proceed there must be low 

turnover of collagen and this is achieved through the action of matrix metalloproteinases (MMPs).  

MMPs are secreted by a number of cell types including macrophages, epidermal cells, endothelial 

cells and fibroblasts and are expressed throughout wound healing (281, 292, 301).   Tissue inhibitors 

of matrix metalloproteinases (TIMPs) are able to regulate the activity of MMPs and are also 

expressed throughout wound healing.  Elevated MMP expression is associated with chronic wounds 

and an increased MMP9/TIMP-1 ratio correlates negatively with healing (302, 303).  Importantly 

though, effective wound healing requires controlled degradation of ECM in order for cell migration, 

epithelialisation, angiogenesis and remodelling to proceed (304-307).  Correspondingly the use of 
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non-specific MMP inhibitors has been shown to reduce keratinocyte migration and myofibroblast 

function in rat wounds, or delay epithelialisation in human skin, resulting in delayed healing (308-

310).  Wounds have around 20% of their final strength at three weeks and remodelling continues in 

the following months to achieve a maximal tensile strength of 60% of the original tissue (311, 312).  

Over this period the ECM is remodelled from mainly collagen type III to one composed of 

predominantly collagen type I (313).  

 

1.10.2 The innate immune system in wound healing 

Neutrophils and then macrophages migrate into the wound in response to injury and are thought to 

play a key role in wound healing in aseptic conditions (292).  Only when infection has been 

eliminated and repair is completed will these cells disappear from the wound site.  The primary 

function of neutrophils in particular is thought to be the elimination of invading microbes (291).  

Neutrophils achieve this role via phagocytosis of infectious agents although in the process often 

release free radicals which lead to death of host cells.  Importantly, elimination of neutrophils in 

sterile conditions did not impair healing and in fact increased healing speed (314, 315).   

  

Macrophages which arrive in the wound shortly after neutrophils operate to remove cell debris, 

fibrin matrix and spent neutrophils (316).  Defective macrophage phagocytosis has been postulated 

to play a role in impaired persistence of inflammatory neutrophils in diabetic wounds, and 

macrophages are known to propagate inflammation in the sodium lauryl sulphate skin inflammation 

model (317, 318).  As mentioned macrophages also produce a number of cytokines and growth 

factors which are thought to play an important role in regulation of fibroblasts and angiogenesis 

(281).  Elimination of macrophages was shown in early experiments to delay removal of damaged 

cells, fibrin and tissue debris (316).  However the importance of macrophages in repair in sterile 

conditions with a concurrent lack of neutrophils has recently come into question. PU.1-null mice, 

which lack both neutrophils and macrophages, show slightly increased rates of re-epithelialisation 

and heal without fibrosis (319).  These mice did have delayed clearance of cell debris but in the 

absence of neutrophils this did not delay healing.  Wound healing in mouse embryos is also known to 

occur without a functional immune system and again without scarring (320).  Importantly these 

studies were performed in sterile conditions and in neonatal antibiotic treated mice in the case of 

the PU.1-null animals. 

 

The importance of macrophages in normal adult wound healing were recently confirmed using 

Diphtheria toxin (DT) mediated elimination of macrophages, although this would also be expected to 
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impair neutrophil clearance in the early phase .  LysM-DT mediated macrophage deletion throughout 

wound healing resulted in increased neutrophils, delayed healing, disturbed angiogenesis and 

increased MIP-2, MCP-1 and IL1β expression (321).  Blood monocyte accumulation was not assessed 

specifically in this study.  Cd11b –DT mediated macrophage deletion led to delayed re-

epithelialisation, reduced collagen deposition, impaired angiogenesis, increased TNFalpha and 

reduced TGFβ1 in wounds (322).  Of note monocyte and neutrophil accumulation in wounds still 

occurred.  A third study looked at the effect of macrophage deletion in early, mid or late wound 

healing (323).  Monocytes were depleted 24 hours after macrophages in this model.  It was found 

that elimination of macrophages in the early inflammatory phase (Day -1 to 5) led to reduced 

vascularisation of granulation tissue, delayed epithelialisation, reduced wound contraction but 

reduced scar formation.  Deletion of macrophages in mid wound healing resulted in reduced 

granulation tissue maturation with concurrent haemorrhage, fibrin and serum exudates from newly 

formed blood vessels into the wound.  Subsequently, increased endothelial apoptosis was 

demonstrated.  A significant reduction in VEGF and TGFβ was also evident.  Wound contraction was 

also ablated and epithelial wound edges became atrophic.  Importantly in instances where 

epithelialisation was complete no increase in neutrophils was observed, but increased haemorrhage 

was still present.  Deletion of macrophages late in wound healing (day 9-14) did not appear to inhibit 

wound maturation, although tensile strength was not assessed.   

 

The results of these studies suggest firstly that neutrophils are not required for wound healing in 

aseptic conditions. Secondly, macrophages are required in a host with normal immune function in 

early and mid wound healing for wound healing to progress at a normal speed in terms of 

epithelialisation, granulation tissue angiogenesis and wound contraction.  And that these functions 

can deteriorate in mid wounding in some cases in the absence of increased neutrophils.  This data 

also suggests the increased wound healing speed facilitated by macrophages comes at a cost of 

increased scarring. These studies are consistent with the fibrotic role of liver macrophages in the 

carbon tetrachloride model of liver fibrosis, although a role for liver macrophages in matrix 

degradation after fibrosis was also demonstrated and not thoroughly assessed in these wound 

healing studies (127). 
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1.10.3 Impaired wound healing and innate immune dysfunction in diabetes. 

 

An increasingly common cause for impaired wound healing is diabetes, this impaired healing can 

progress to a chronic wound (282, 324).  In fact it was found that HbA1c was the best predictor of 

wound healing speed in a panel of patient characteristics (325).  Due to impairments in wound 

healing chronic wounds in the form of ulcers can occur in up to 15% of diabetic patients (326).  An 

unhealed wound is then a portal to infectious agents which can lead to sepsis and subsequent 

amputation.  Importantly ulceration preceeds approximately 84% of lower leg amputations in 

diabetic patients (327).  The global factors leading to this delay in wound healing include repeated 

trauma to the wound due to loss of sensation and ischemia (282, 324).  In addition multiple 

impairments occur in models of diabetic wound healing throughout all phases of healing and include 

defective cell function, decreased angiogenesis, impaired epithelialisation, impaired keratinocyte 

proliferation and migration, decreased collagen content and impaired cytokine and growth factor 

production (317, 328, 329).  

 

In terms of impaired cellular components, impaired macrophage function has been demonstrated in 

terms of phagocytic clearance of necrotic tissue (317).  Studies have demonstrated impaired 

chemotaxis, phagocytosis and killing of bacteria in diabetic polymorphonuclear cells and 

monocytes/macrophages compared to normal controls (330-332). Accumulation of macrophages has 

been reported in chronic diabetic ulcers and in wounds of Ob/Ob mice (333-335).  In a primate model 

of diabetes macrophages were initially decreased but both neutrophils and macrophage numbers 

failed to decrease by week 4 (336).  In the chronic diabetic wound the idea of excessive inflammation 

appears to be supported by increased numbers of inflammatory cells with an absence of cellular 

growth and migration over the wound (335, 337).  Impaired innate immune system function in 

diabetic patients may also impact wound healing through increased infection, an important source of 

morbidity in diabetic patients (338).  An important factor in infection is the decreased immune 

function in diabetic patients  (331). Correspondingly bacterial infection has been shown to correlate 

negatively with diabetic ulcer healing, and persistent infection would also prolong the inflammatory 

phase (339).  In addition fibroblasts at the diabetic wound site have impaired proliferation and 

differentiation (340, 341), while chronic wound keratinocytes at the callus exhibit impaired 

migration, hyperproliferation and reduced differentiation (342-344).  Endothelial progenitor cell 

(EPC) function is also compromised in diabetic patients and contributes to impaired angiogenesis in 

diabetic wounds (345-347).  Importantly stromal cell-derived factor-1α has been shown to mediate 

EPC recruitment from bone marrow progenitors to wounds, and decreased levels are found in 
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diabetic patients (347).  Also mobilisation of EPCs from bone marrow is impaired due to decreased 

hypoxia response and decreased VEGFA release from ischaemic wound fibroblasts, macrophages and 

epithelial cells (327, 348, 349).  Mobilisation of bone marrow EPCs via hyperoxia and subsequent 

homing to wounds by application of SPF-1α was correspondingly shown to improve wound healing in 

diabetic mice (347).  VEGF is a potent stimulator of all steps in angiogenesis including; degeneration 

of extracellular matrix of old vessels, migration and proliferation of capillary endothelial cells (350).  

 

A number of key growth factors are decreased in chronic wounds of diabetic patients including IGF-1, 

TGFβ1 and PDGF (351-353).  Decreased levels of these growth factors have also been found in acute 

wounds of diabetic wounds of mice and application of these agents to diabetic animal models 

accelerates healing (354, 355).  IGF-1 is involved in epithelialisation, keratinocyte and fibroblast 

proliferation and endothelial cell chemotaxis (281).  However the role of transforming growth factor 

beta 1 (TGF-β1) which has important functions throughout wound healing including chemotactic, 

growth factor stimulating, angiogenesis and ECM deposition is more complex (285).  As evidenced in 

a model of constitutive expression of TGF-β1 in keratinocytes, in which a delay in wound healing was 

found concurrently with increased inflammation (356).    A putative negative regulator of TGF-β1, 

TGF-β3, has also been found to be increased in diabetic foot ulcers (352).   Platelet derived growth 

factor (PDGF) is another growth factor which is expressed throughout wound healing and serves 

multiple functions including; chemotactic, growth factor secretion and production of ECM 

components (284).  Keratinocyte growth factor (KGF) involved in epithelialisation.  Nerve growth 

factor (NGF) in involved in keratinocyte and endothelial proliferation,  neutrophil survival  and 

monocyte differentiation (324). Both KGF and NGF, are reduced in diabetic human wounds and 

animal wound models (357-360).  While growth factors have been found to be decreased, a 

prolonged expression of inflammatory cytokines TNF-α, IL-1β and chemokines MCP-1 and MIP-1α has 

been reported in ob/ob diabetic mice (335). However, leptin receptor deficiency also impairs 

immune function and no increase in TNF-α in streptozotocin treated acute mouse wounds were 

found (361, 362).  In fact a decrease in IL-6 at later time points of healing was reported.  In diabetic 

rabbits IL-6 and IL-8 were found to be increased in skin basally compared to control animals. 

However expression of these cytokines and their receptors failed to increase after wounding as is the 

case in non-diabetic control animals (363).  As mentioned, patients with diabetes also display 

impaired angiogenesis with insufficient activation of angiogenesis. This may be attributable in part to 

reduced proangiogenic factors TGF-β1, VEGF and bFGF in diabetic models. Correspondingly 

treatment of mice with VEGF or bFGF accelerated wound healing while increasing angiogenesis in 

diabetic animals (364, 365).   
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Generation of reactive oxygen species (ROS) is important for elimination of invading organisms from 

the wound (366).  However, recent studies suggest elevated ROS impair proper angiogenesis (367).  

In normally healing wounds ROS peaks in the early inflammatory phase then declines. Impaired 

wound healing is associated with persistence of elevated ROS within the wound (366), this is likely 

attributed in part to the increased inflammation observed in chronic diabetic wounds.  However, ROS 

generation is required for optimal wound healing as mice lacking the ability to produce superoxide 

also display impaired wound healing (368).  Nonetheless, decreased levels of the key cellular 

antioxidant glutathione are found in wounds of mice with diabetes and in human diabetic ulcers, and 

topical glutathione application accelerated wound healing in diabetic mice (369).   

  

There have been a number of ECM alterations documented in diabetic patients and diabetic wounds 

which contribute to impaired wound healing.  For example the collagen content of normal skin and 

wounds of diabetic animals has been found to be reduced (370, 371).  These lower levels have been 

associated with decreased synthesis by fibroblasts (324, 372-374).  Added to this ECM components 

become glycated in the presence of high glucose and that this glycation disrupts assembly and 

fibroblast attachment (375, 376).  A number of studies have also shown increased levels of MMPs in 

chronic diabetic wounds including MMP-2, MMP-8 and MMP-9 with a corresponding decrease in 

TIMP expression, this environment favours ECM breakdown and would disrupt ECM deposition as 

well as decrease the availability of growth factors (301-303, 324).  Elevated inflammatory cytokines 

such as TNF-αa in chronic wounds could decrease the amount of TIMP synthesised by fibroblasts and 

could thus contribute to the imbalance, while reduced TGF-β1 which enhances TIMP production and 

is decreased in diabetic wounds may also play a role (335, 377-379).   

 

In the past decade evidence has accumulated for the importance of HIF-1α in wound healing.  It has 

been shown that HIF-1α activity is reduced at high glucose concentrations in human fibroblasts and 

diabetic animals (380-383).  HIF-1α expression was also found to be decreased in human diabetic 

ulcers and with increasing age in db/db mice (383, 384).  Artificially elevating the level of HIF-1α 

through desferoxamine (DFO), CoCl2 or constitutively active HIF-1α producing constructs lead to 

improved wound healing in models of diabetes (381, 382).  Interestingly IGF-1 was also found to 

regulate HIF-1α expression in db/db mice, and treatment with recombinant IGF-1 resulted in 

increased HIF-1α  and improved wound healing (240).  HIF-1α mediates its effects on wound healing 

in part by increasing expression of VEGF in response to hypoxia in fibroblasts (380). Importantly DFO 

treatment of mouse wounds led to increased angiogenesis and granulation tissue.  In addition high 
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glucose has been found to induce a defect in HIF-1α transactivation and reduce binding to the 

coactivator protein p300.  This was mediated through covalent modification by methylglycoxal at 

high glucose concentrations (380).    In support of a role for HIF-1α in endothelial cell mediated 

angiogenesis it has also been reported that deficiency of either HIF-1α or its partner ARNT in 

endothelial cells delayed wound healing, reduced vascularisation and reduced EPC mobilisation to 

wounds (385).  HIF-1α is also known to regulate the release of Hsp90α by human dermal fibroblasts 

in response to ischaemia (386).  In line with decreased HIF-1α in diabetic wounds treatment of mice 

with the F -5 peptide fragment of Hsp90alpha was shown to greatly increase wound healing speed in 

diabetic animals, although not to normal healing speeds (287). The importance of HIF-1α in innate 

immune function was shown by Cramer et al (238) who found decreased immune function in mice 

with myeloid cell deletion of this gene.  Subsequently it was found that HIF-1α was important in 

regulating apoptosis, phagocytosis and bacterial killing which has similarities with the diabetic innate 

immune phenotype (238, 266, 267).  It is clear that increasing the levels of HIF-1α and its products 

have been shown to improve wound healing speeds, and importantly the agents used to increase 

HIF-1α have not been specific.  The levels of HIF-1α may be decreased in other cell types, including 

myeloid cells, in the diabetic environment and further contribute to impaired wound healing.    
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1.11 Conclusions 

The results of numerous studies support a role for ARNT and its partners in the function of the liver.  

These processes include lipid accumulation, glucose homeostasis, inflammation and fibrosis.    

However many of the models employed to investigate the role of the HIF’s use acute adenoviral 

mediated deletion of Vhl which results in non-physiological elevation in the levels of the HIFs. In 

addition HIF in this situation would still be modified, having been hydroxylated on proline and 

asparagines residues which is known to affect function (236).  The result of long-term reduction in 

liver ARNT remains unknown.  

 

It is also clear that ARNT in myeloid cells is likely to play a role in innate immune function.  And that 

innate immune function can impact upon whole body metabolism and contribute to the diabetic 

phenotype. In addition it is clear that innate immune function is involved in adult wound healing in 

aseptic conditions, and that reduced HIF-1α plays a role in normal healing which is compromised in 

diabetes and with increasing age.  
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1.12 Hypothesis and aims 

At the beginning of this thesis it was known that ARNT was reduced in the islets of patients with Type 

2 Diabetes and was essential for normal islet function.  It was hypothesised that ARNT may be 

regulated during the course of metabolic disease and also contribute to tissue dysfunction.  More 

specifically 

 

1) ARNT may be reduced in the liver of patients with metabolic disease and this long-term 

decrease in ARNT could contribute to or reduce the development of Non-alcoholic fatty liver 

disease, Non-alcoholic steatohepatitis and liver fibrosis.   

 

2) Liver ARNT may also contribute to metabolic dysfunction of the liver and the diabetic 

phenotype. 

 

It was also known that loss of HIF-1α in cells of the innate immune system impaired immune function 

in animal models but the role of its partner ARNT was not known. 

 

3) ARNT may play a role in innate immune function.   

 

4) ARNT may play a role in innate immune function in diabetes and also contribute to the 

diabetic phenotype.   

 

 

1.12.1 Aims 

To create the hepatocyte-specific ARNT-knockout (LARNT) mouse line by using the Cre-LoxP system 

with Cre expression under control of the albumin promoter and  

 

1) To characterise LARNT mice on chow diet in terms of markers of Non-alcoholic fatty liver 

disease, Non-alcoholic steatohepatitis and whole body metabolism of glucose and lipids. 

 

2) To characterise LARNT mice in the High Fat Diet model of Type 2 Diabetes including; 

assessment markers of Non-alcoholic fatty liver disease, Non-alcoholic steatohepatitis and 

whole body metabolism of glucose and lipids. 
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3) To characterise LARNT mice in the thioacetamide model of liver fibrosis in terms of collagen 

production and histology. 

 

To create the myeloid-specific ARNT-knockout (LAR) mouse using the Cre-LoxP system with Cre 

expression under control of the LysM promoter and 

 

1) Characterise LAR mouse immune function and wound healing in terms of; Gene expression, 

phagocytosis, bacterial killing, in vivo models of immune function and wound healing. 

 

2) To characterise metabolism of LAR mice on chow and in the high fat model of Type 2 

Diabetes including; Assessment of markers of Non-alcoholic fatty liver disease, Non-alcoholic 

steatohepatitis and whole body metabolism.  



55  

 

 

 

Chapter 2. Materials and methods 
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2.1 Buffers and solutions 

Chemicals and other reagents were purchased from Sigma-Aldrich (Australia) unless otherwise 

specified. 

 

Acid ethanol 

1 % 1 M HCl  

Made up with 70 % ethanol  

 
 

Bovine calf serum (BCS) 

Bovine calf serum (Hyclone, USA) was heat inactivated for 30 minutes at 56 °C before use. 

 

 

Cell lysis buffer  

 10 mM  Tris-HCl 

 1 %  Triton X-100 

 0.5 %   NP-40 

 150 mM Sodium chloride 

 10 mM  Sodium phosphate 

 100 mM Sodium fluoride 

 1 mM  EDTA 

 1 mM  EGTA 

 10 mM  Sodium orthovanadate 

 10 mM  Sodium orthophosphate 

One tablet per 50 ml of Complete protease inhibitor cocktail tablets (Roche, Germany) was 

added and pH 7.4. 
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DNA isolation buffer  

670 mM  Tris pH 8.8 

166 mM  Ammonium sulphate 

65 mM   Magnesium chloride 

10 %   β-mercaptoethanol 

5 %   Triton X-100 

 

 

Kreb’s buffer  

115 mM  Sodium chloride  

4.7 mM  Potassium chloride  

1 mM   Magnesium sulphate  

1.2 mM  Potassium sulphate  

25 mM   Sodium bicarbonate  

1 mM   Sodium pyruvate  

10 mM   Hepes 

 pH 7.4 

 

 

Phosphate buffered solution (PBS) 

 3.6 %   Disodium hydrogen orthophosphate 

0.2 %   Potassium chloride 

0.24 %   Potassium dihydrogen orthophosphate 

8 %   Sodium chloride 

 

Red Blood Cell Lysis Buffer (RBC lysis buffer) 

8.29g   NH4Cl 

1g  KHCo2  

200µl  EDTA 

Made up to 1L in distilled water 

 

 



58  

 

RIPA cell lysis buffer 

 0.5 %  Sodium deoxycholate 

 10 mM  Hepes 

 1 %  NP-40 

 0.1 %  SDS 

 pH 7.4  

 

 

RPMI media 

10%   BCS 

2 mM  L-glutamine 

Made in Roswell Park Memorial Institute-1640 medium (RPMI-1640, Invitrogen, USA). 

 

 

Minimal essential media (MEM) 

10%   BCS 

2 mM  L-glutamine 

25 mM  Hepes 

Made from MEM powder from  

 
 

High glucose minimal essential media (MEM)  

10%   BCS 

2 mM  L-glutamine 

25 mM  Hepes 

+ 19mM Glucose  

Made from MEM powder from  

 

DMEM media low glucose 

10%   BCS 

2 mM  L-glutamine 

5mM  Glucose 

Added to 0mmol/L Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen, USA). 

 

DMEM media high glucose 

10%   BCS 
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2 mM  L-glutamine 

25mM  Glucose 

Added to 0mM glucose Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen, USA). 

 

 

Sirius Red Stain 

0.1%   Direct Red 80  

0.1%   Fast Green FCF  

Made up in 1.3 % Saturated picric acid solution. 

 

 

Perl’s stain 

Solution A 

20%   Aqueous Hydrochloric Acid  

20ml   Hydrochloric acid, 1M 

80ml   Distilled water  

 

Solution B 

10%   Aqueous Solution of Potassium Ferrocyanide 

10g  Potassium ferrocyanide, Trihydrate 

100ml   Distilled water  

 

Milligan’s Trichrome stain solutions 

Solution A 

2.25g   Potassium dichromate 

2.25ml   Hydrochloric acid  

25ml   Ethanol, 95%  

75ml   Distilled water  

 

Solution B 

0.1g   Acid fuchsin  

100ml   Distilled water  

 

Solution C 

1g   Phosphomolybdic acid 
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100ml   Distilled water  

 

Solution D 

2g   Orange G  

1g   Phosphomolybdic acid 

100ml   Distilled water  

 

Solution E 

1ml   Acetic acid, glacial 

100ml   Distilled water  

 

Solution F 

0.1g   Fast green FCF  

0.2ml   Acetic acid, glacial 

100ml   Distilled water  

 

 

Todd Hewitt broth (THB) media 

 

Todd Hewitt broth (Sigma, Australia) was made up as per manufacturer’s instruction. THB agar was 

made with the addition of 15g of Agar per Litre. Solutions were sterilised by autoclaving before use.    

 

Reducing sample buffer 

75%   distilled water 

2%   SDS 

0.0625 mol/L  Tris-HCl pH 6.8 

25%   glycerol 

0.5%   bromophenol blue 

0.5 ml   2MeOH 

 

Streptozotocin buffer (Strep Buffer). 

 

0.1M Citric Acid  (A) 

0.1M Sodium Citrate (B) 
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28mls (A) added to 25.5mls (B) made up to pH 4.21 in distilled water.  

 

Transfer buffer 

20%   methanol 

0.1 mol/L  Tris   

80 mmol/L  Glycine   

1mmol/L  NaPO4   

 

Western SDS running buffer 

3g   Tris 

14.4g   Glycine   

1g   SDS 

Made up in 1000mL deionised water 
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2.2 Cell culture  

2.2.1 Cell lines 

HuH7 and RAW cell lines were maintained in a tissue culture incubator with 5% CO2 at 37 °C. Cells 

were passaged as needed at 70-80% confluence by washing with PBS then incubation with 0.05% 

trypsin-EDTA (Invitrogen, USA) for 5 minutes at 37 °C.  Trypsin was neutralised by the addition 2 x the 

volume of complete media and cells were divided into new flasks.  HuH7 cells were maintained in 

MEM media. For experiments using high glucose cells were maintained in MEM with high glucose. 

RAW cells were maintained in DMEM with high or low glucose.  

 

2.2.2 Bacteria 

Group A streptococcus (GAS) were a gift from St Vincent’s Hospital Pathology.  Cells were grown in 

THB in stationary cultures overnight at 37°C. Cultures were grown to logarithmic phase OD 600 = 0.6 

for the GAS infection study.  Isolated bacteria were grown on THB agar plates overnight at 37°C. 
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2.3  Animals 

 

All animals received humane care according to the criteria outlined in the “Australian code of 

practice for the care and use of animals for scientific purposes” prepared by the National Health and 

Medical Research Council (2004). 

 

2.3.1 Mouse lines 

 

The LAR and LARNT lines are tissue specific Aryl-hydrocarbon Receptor Nuclear Translocator 

(ARNT) knockout mice generated on a C57Bl/6 background using the Cre-lox system.  Cre-lox 

recombination involves the targeted splicing of a specific DNA sequence using a site specific Cre 

recombinase in order to create a tissue-specific knockout.  Exon 6, encoding the conserved basic-

helix-loop-helix domain of the protein ARNT was flanked by lox-p sites (flox) and introduced 

into the ARNT gene by standard gene disruption techniques using embryonic stem cells to 

produce homozygous ARNT flox/flox mice (387).   

 

2.3.1.1 LARNT mice 

To  create the hepatocyte specific ARNT knockout mice (LARNT) floxed ARNT mice were interbred 

with mice expressing Cre-recombinase under control of the albumin promoter (Alb-Cre) (a kind gift 

from David James, obtained from Jackson laboratories, Boston). Alb -Cre is expressed in hepatocytes.  

Mice were generated to be homozygous for floxed ARNT and either heterozygous or wild type for 

Alb-Cre.  Alb-Cre positive ARNT flox/flox mice are hepatocyte ARNT knockout animals (LARNT), and 

Alb-Cre negative ARNT flox/flox mice are floxed controls (FC). Only one copy of Cre is required to 

produce the hepatocyte-specific phenotype, thus the phenotype is inherited in an autosomal 

dominant manner.  Mice were C57Bl/6 for more than 12 generations to ensure genetic homogeneity. 

Arnt mRNA expression in FC compared to LARNT mice is shown in Figure 3.1b. An example of ARNT 

protein expression in FC compared to LARNT animals is shown in Figure 2.1. 
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Figure 2.1 ARNT protein expression by western blot in LARNT animals.  
An example of ARNT protein expression in a LARNT mouse is shown. In this western blot ARNT protein was 
assessed in female FC chow fed (FC chow) and HFD fed animals (FC HFD). Protein from a LARNT animal was run 
as a control (LARNT).  Alpha Tubulin (Tubilin) was used as a loading control. 

 

 

2.3.1.2 LAR mice 

To  create the myeloid specific ARNT knockout mice (LAR) floxed ARNT mice were interbred with 

mice expressing Cre-recombinase under control of the lysosome M (LysM) promoter (LysM-Cre), 

which is expressed in myeloid cells (388).  As above, mice were generated to be homozygous for 

floxed ARNT and either heterozygous or wild type for LysM-Cre.  LysM-Cre positive ARNT flox/flox 

mice are myeloid cell ARNT knockout animals (LAR), while LysM-Cre negative ARNT flox/flox mice are 

floxed controls (FC).  As above, mice were C57Bl/6 for more than 12 generations to ensure genetic 

homogeneity. 

 

 

2.3.2 Housing 

Animals were housed in the Biological Testing Facility at the Garvan Institute of Medical Research, 

which employs a 12 hr on-off light cycle (0700-1900 on, 1900-0700 off).  Mice were housed in 

standard filtered boxes, sterilised bedding was used.   

 

2.3.3 Feeding 

2.3.3.1 Chow 

LAR and LARNT mice were provided with standard chow food containing 59.9 %, 26.7 % and 13.4 % 

calories from carbohydrate, protein and fat respectively (Agrifood technology, Australia) unless 

otherwise stated and water ad libitum.   

 
 

 

ARNT

Tubulin

FC chow FC HFD LARNT
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2.3.3.2 Hugo’s high fat diet 

The Hugo’s High Fat Diet (HFD) was prepared according to Rodent Diet D12451 from Research Diets 

Incorporated.  The ingredients are as follows:  

 

261 g    Casein  

230 g   Sucrose  

193 g   Starch  

51 g   Bulking mineral mix 

14.8 g   Trace minerals  

57 g   Bran  

3.4 g   Methionine  

23 g   Gelatine  

4.6 g   Choline bitartrate  

29.6 g   AIN Vitamin Mix 76A (ICN Biomedicals, Australia) 

68 g  Safflower oil 

500 g   Melted Allowrie lard 

Dry ingredients were mixed thoroughly before addition of oil and lard.   

 

Water was provided ad libitum. 

 

2.3.4 Genotyping 

Genotyping for Cre and Arnt were performed by PCR and separation on 1.5 % agarose gels using 

genomic DNA from tail tips.  Tips were digested overnight in 200 μl DNA isolation buffer with 0.5 μl 

proteinase K (Roche, Germany) at 65 °C.  PCR was performed using standard protocols with 5 μl of 

GoTaq Master Mix Taq polymerase (Promega, USA), 1 μl of DNA solution, 2 μl of Cre or Arnt primers, 

and 2 μl of Irs-2 primers (control).  Irs-2 primers were included in every Cre genotyping reaction as a 

positive control which confirmed successful DNA amplification for Cre negative samples.  For primers 

and PCR program is shown below. Example PCR gels, performed by Kuan Cha, are shown in Figure 

2.2.   
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Cre and ARNT genotyping 

 

Primers: 

 

Arnt forward: TTCTTTTGGGTGGATGATTTTT 

Arnt reverse: GAGGGAGGGGAAAAGAAAGG 

Cre forward: AGGTGTAGAGAAGGCACTTAGC 

Cre reverse: CTAATCGCCATCTTCCAGCAGG 

Irs-2 forward: GTAGTTCAGGTCGCCTCTGC 

Irs-2 reverse: TTGGGACCACCACTCCTAAG 

 

PCR program: 

 

Initial melt step 5 minutes at 95 °C    

35 cycles 

- Denature  45 seconds at 95 °C 

- Anneal  45 seconds at 60 °C 

- Extend  45 seconds at 72 °C 

Final extension 6 minutes at 72 °C 
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Figure 2.2 Example PCR gels 
(A) An example gel from the Arnt pcr.  PCR of animals containing a floxed Arnt allele results in a product of 340 
bp.  PCR of animals containing the wild-type allele (Wt) produced a product of 290bp.  (B) An example gel from 
the Cre PCR.  The Irs-2 PCR was used as a control of PCR quality and produced a product of 184bp. Animals 
were either positive (Cre+, product at 356bp) or negative for Cre (Cre-). (C) Example gel from LARNT line 
genotyping with Arnt and Cre PCR. All animals contain 2 alleles of floxed ARNT and are either positive or 
negative for Cre. (D) Example gel from LAR line genotyping with Arnt and Cre PCR. All animals contain 2 alleles 
of floxed ARNT and are either positive or negative for Cre. In lane 2 of the ARNT PCR the PCR has failed and no 
product is present. Standard DNA marker (SM), Floxed control (FC), Heterozygote Arnt (Floxed Arnt/ Wt Arnt = 
Het). 

  

SM Cre- Cre+ Cre- Cre+ Cre- Cre+

SM Het FC Het

Wt Arnt (290bp)

Floxed Arnt (340bp)

Irs-2 (184 bp)

Cre (356bp)

A

B

C

D

SM

SM

Irs-2 (184 bp)

Cre (356bp)

Floxed Arnt (340bp)

Floxed Arnt (340bp)

Irs-2 (184 bp)

Cre (356bp)

Cre+ Cre+Cre-

Cre- Cre-Cre+ Cre+Cre+

Failed PCR

Arnt PCR Cre PCR

Arnt PCR Cre PCR
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2.4 In vivo experiments 

 

2.4.1 Metabolic tests 

 

2.4.1.1 Glucose tolerance tests 

LARNT mice were fasted overnight for 16 hours.  LAR mice were fasted for 6 hours. Glucose was 

administered at a dose of 2 g/kg by intraperitoneal injection in the form of a 20 % dextrose solution.  

Tails were nicked with a scalpel blade and blood glucose was measured via the Accucheck Advantage 

II glucometer (Roche, Australia) prior to, and at 15, 30, 60, 90 and 120 minutes after the dextrose 

injection 

 

2.4.1.2 Insulin tolerance tests 

LARNT mice were fasted overnight for 16 hours. LARNT HFD fed mice and all LAR mice were fasted 

for 6 hours.  Chow fed female mice were injected with 0.25 units of insulin per kilogram. Male and all 

HFD mice were injected with 0.5 units per kg of Insulin (diluted in 1x PBS with 1% bovine serum 

albumin) delivered by intraperitoneal injection.  Tails were nicked with a scalpel blade and blood 

glucose was measured via glucometer prior to, and at 10, 20, 30, 45 and 60 minutes after the insulin 

injection. 

 

2.4.1.3 Pyruvate tolerance tests 

Mice were fasted overnight for 16 hours.  Pyruvate was administered at a dose of 2 g/kg by 

intraperitoneal injection in the form of a 20 % pyruvate in PBS solution.  Tails were nicked with a 

scalpel blade and blood glucose was measured via the Accucheck Advantage II glucometer (Roche, 

Australia) prior to, and at 15, 30, 45, 60 and 90 minutes after the dextrose injection 

 

 

2.4.2 Tissue collection 

2,2,2-tribromoethanol or ketamine+xylzaine was administered by intraperitoneal injection to achieve 

deep anaesthesia.  Tissues were divided for formalin fixation (10% Neutral Buffered Formalin, 

Australia Biostain PTY LTD), snap-freezing in liquid nitrogen or in OCT (Tissue-Tek, Thuringowa, 

Australia) for frozen sections. 
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2.4.2.1 Plasma 

After deep anesthesia with 2, 2, 2-tribromoethanol or ketamine+xylzaine 500µl of blood was 

collected by cardiac puncture and placed in an eppendorf containing 40 µl of 0.5M EDTA. After 

centrifugation, the supernatants were stored at -80°C. 

 

2.4.2.2 Liver and fat 

After metabolic studies LARNT mice were sacrificed after an overnight fast and LAR animals were 

sacrificed after 6 hours of fasting, unless otherwise specified.  Mice were sacrificed at least 1 week 

after the last test. Liver, epigonadal and subcutaneous fat were collected and weighted before 

processing samples as described above  

 

2.4.2.3 Skin 

 Skin samples were obtained from animals with free access to food before sacrifice. Skin samples 

were divided as described above.  For measuring tensile strength mice were de-gloved and skin 

stored flat at -80°C.  

 

 

2.4.3 HFD studies 

HFD studies were commenced on mice of age 10-12 weeks. Mice were initially weighed and had a 

baseline glucose tolerance test before commencing on HFD. Mice were weighed weekly and received 

subsequent metabolic tests before sacrifice and tissue collection as illustrated below (Figure 2.3).  

 

  

Figure 2.3 HFD timeline. 
LARNT mice (A) and LAR mice (B). 
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2.4.4 Re-feeding studies 

For re-feeding studies mice receiving chow diet or HFD (for two weeks) were fasted overnight. Mice 

were then re-fed with chow or HFD. Six hours later mice were sacrificed and serum and liver 

collected as described.   

 

2.4.5 Thioacetamide (TAA)-induced liver fibrosis model 

LARNT mice at 10 weeks of age were injected twice weekly with 0.15 and 0.056mg/g body weight for 

15 weeks. At the end of the study mice were fasted for 6 hours before sacrifice and tissue collection 

as described.  

 

 

2.4.6 Skin transplant study 

Mice were anaesthetised with inhaled isoflurane and shaved. Skin grafts were taken from Balb/c 

mice (H-2d) and transplanted onto LysM-ARNT (KO) or floxed-controls (FC) (C57Bl/6, H-2b). Grafts 

were sex-matched but full-MHC-mismatched. The reciprocal transplant was also performed. 

Transplant performance was scored blinded to mouse genotype until complete rejection. 

 

2.4.7 GAS study 

Mice were anaesthetised with isoflurane, shaved and residual hair was removed with Nair (Church & 

Dwight, Australia). GAS bacteria were grown to OD 600= 0.6 (5x107 CFU) as described.  The following 

day mice were weighed and injected subcutaneously on their flank with 50µl of bacteria plus 50µl of 

sterile THB.   Mice were weighed and wounds measured daily.  On day 4 (96 hours) final 

measurements were taken and mice were culled.  Whole blood, spleen and wounded skin were 

taken for bacterial counts.   Spleen and skin were homogenized in cold PBS to a concentration of 

100mg/ml.  Blood was also homogenized and kept on ice.  30ul of homogenates were plated onto 

THB in serial dilutions and colony forming units calculated.   

 

2.4.8 Skin irritation study 

Mice were anaesthetised with isoflurane, shaved and residual hair was removed with Nair. They 

were left to recover for 3 days. Then 5% sodium dodecyl sulphate (SDS) was then painted onto skin 

twice daily for 5 days. Mice were then sacrificed and skin was fixed in formalin for histology. Skin was 

scored blinded to genotype.   
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2.4.9 Wound healing studies 

Mice were anaesthetised with isoflurane, shaved and residual hair was removed with Nair. They 

were left to recover for 3 days.  Mice were again anaesthetised with isolfurane and skin was swabbed 

with ethanol.  Two 0.5cmx0.5cm squares of epidermis and dermis were removed from behind the 

shoulder blade of each mouse.  Mice wounds were then bandaged and assessed every second day by 

tracing wound margins. Day 0 is taken as the day following wounding as wounds stretched to varying 

degrees after wounding. Bandaids were removed on day 6. Wounds were collected at day 4 for RNA 

and histology.  

 

2.4.9.1 Wound healing with diabetes 

Mice were rendered diabetic by streptozotocin (STZ) injection 180mg/kg delivered in strep buffer. 

Mice were considered diabetic if mice had random blood glucose levels of > 15mmol/L on two 

consecutive days. Wound healing experiments were then conducted as above.  

 

2.4.9.2 Wound healing with DFO and diabetes 

Mice were rendered diabetic by Alloxan injection 100mg/kg delivered dissolved in sterile water. Mice 

were considered diabetic if mice had random blood glucose levels of > 15mmol/L on two consecutive 

days.  Wound healing experiments were then conducted as above with the addition of 20µl of 

0.0125µM deferoxamine (DFO) wounds starting at Day 0, then every second day when wounds were 

assessed.   

 

 

2.4.9.3 Tensile strength 

Non diabetic mice were culled and de-gloved when all wounds had completely healed (day 18 of 

wounding).  Skin was stored in foil at -80 until tensile strength testing.  Skin was cut into 

approximately 1cm x 1cm squares and paddle pops glued to each end to attach at the site of 

clamping (Figure 2.4).  Tensile strength was determined at room temperature. Tissue ends with 

paddle pops were clamped with an Elf 3400 Tensinometer (BOSE EnduraTec, Minnetonka, MN, USA).  

Exact cross sectional area was obtained using calipers and Young’s Modulus was calculated (Tensile 

Strength).  

 

 



72  

 

   

Figure 2.4 Tensile strength testing.  
Left shows a schematic of clamp set up in relation to scar tissue. On the right is a picture of the Elf 3400 
Tensinometer with skin clamped..  
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Skin

Scar
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2.5 Primary cell studies 

 

2.5.1 Thioglycollate elicited macrophages 

Macrophages were isolated by injection of 2ml of 3% thioglycollate media 4 days before harvest. At 

day 4 mice were culled by cervical dislocation and 10ml ice-cold PBS was injected and incubated for 

1min with agitation. Lavage fluid was removed and cells were resuspended in RPMI media and 

plated. Non-adherent cells were removed by washing with room temperature PBS and the remaining 

cells were used in experiments.  100ng/ml of lipopolysaccharide was used to stimulate primary 

macrophages for 16 hours.  Cells were harvested in RLT buffer for mRNA quantification.   

 

2.5.2 Primary hepatocytes  

Mice were anaesthetised and the portal vein cannulated. Saline was passed through the liver and the 

inferior vena cava and abdominal aorta were cut. The cannulated liver was then flushed with Krebs + 

0.5mM EGTA.  Liver was then pulsed with serum free MEM with 5mmol/L CaCl2 containing 

Collagenase D at 0.05g/100ml.  Liver was removed and diced before passing through a 100micron 

sieve.  Cells were washed in normal media and plated at 1x 106 cells per 25cm2 tissue culture flask.   

 

Isolated hepatocytes were cultured overnight in 25cm2 flasks in complete MEM medium. The 

following day cells were washed twice with PBS, and incubated in Krebs buffer plus 0.25 % fatty acid 

free BSA (Sigma-Aldrich, USA) containing 6mM glucose, 0.125 mM palmitate and 0.25 μCi/ml of [1-

14C]-palmitic acid (GE Healthcare, USA) for 24 hours at 37 °C with 5 % CO2.   Filter paper soaked in 5 % 

KOH was suspended over the cells and the flasks sealed shut.  The reaction was stopped by the 

addition of 500 μl of 40 % perchloric acid.  Radioactivity was counted in 4 ml Microscint-20 (Perkin 

Elmer, USA) using the LS 6500 Scintillation Counter (Beckman Coulter, USA). Results were corrected 

for total protein using the assay described in 1.9.1  

 

2.5.3 Phagocytosis assay.   

 

Blood was collected via tail bleed into heparin-containing eppendorf tubes. 50ul of blood was placed 

into v-well plate and incubated with 0.5x106 Staphylococcus Aureus bioparticles labelled with 

BIODIPY FL (Invitrogen, Australia) for 30 minutes.  Cells were fixed in 2-4% formaldehyde and red 

blood cells lysed in RBC lysis buffer.  Fixed cells were resuspended in FACS buffer and bacterial 

uptake assessed by flow cytometry (FACS Calibur, Becton Dickson, Australia).  Granulocyte and 
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monocyte populations were determined by Forward Scatter (FSC) and Side Scatter (SSC) 

characteristics.  Blood granulocytes, which include neutrophils, are characterised by high SSC.  Blood 

monocytes are characterised by lower SSC and higher FSC (Figure 2.5) 

 

 

Figure 2.5 (SSC) and FSC characteristics of granulocytes and monocytes. 
FSC and SSC characteristics of granulocyte and monocyte populations. 
(from http://www.assay-protocol.com/index.php?page=flowcytometry-diagrams).  
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2.6 Histology 

Five μm thick sections were cut from paraffin-embedded, formalin fixed tissues.  Sections were 

incubated at 70 °C for 10 minutes prior to de-waxing with xylene and standard progressive ethanol 

rehydration.  After staining sections were dehydrated and coverslips mounted using GVA Mount non-

aqueous mounting solution (Zymed, USA).  

 

2.6.1 Haematoxylin and Eosin staining 

After de-waxing sections were  

1) Incubated in Haematoxylin (Haematoxylin Instant from Thermo Fisher Scientific) for 1 

minute. 

2) Rinsed with distilled water. 

3) Incubated in 1% Acid alcohol for 10seconds (1M HCL- 4mL and 400mL 70% Ethanol). 

4) Rinsed with water from the hot water tap and letting it run from cold to hot (1min). 

5) Incubated with 70% ethanol for 1min. 

6) Incubated with 95% ethanol for 1min. 

7) Incubated with Eosin – 2 quick dips (Eosin Y solution with Phloxine, 1L from Sigma-Aldrich). 

8) Incubated with 95% ethanol for 30 seconds. 

9) Incubated with 95% ethanol for 1min. 

10) Incubated with 100% ethanol for 2min. 

11) Incubated with 100% ethanol for 2min. 

12) Allowed to dry in oven (1-2min). 

13) Coverslipped. 

 

2.6.2 Sirius red 

Hydrated sections were stained for collagen in sirius red staining solution for 45 minutes (See Section 

1.2).  

 

2.6.3 Pearls stain 

Sections were stained for iron using standard Perl’s staining solutions described in section 1.2. 

Solutions A and B were mixed and hydrated slides were incubated in stationary solution for 20min. 

Sections were counterstained in Nuclear Fast Red solution (Vector Lab Inc, USA). 
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2.6.4  F4/80 staining 

Staining was performed using the DakoCytomation EnVision+ Dual Link System-HRP (DAB+) Kit (Dako, 

USA) as per manufacturer’s instructions.  After antigen retrieval Rat F480 monoclonal antibody 

(Abcam, USA) was diluted 1:100 in Antibody Diluent (Dako, USA).  After staining, slides were 

counterstained using a standard haematoxylin and ethanol dehydration protocol.    

 

2.6.5  Trichrome 

Standard Milligan’s Trichrome staining was performed using solutions A-F listed in section 1.2.   

 

 

2.7  mRNA expression  

2.7.1 RNA Isolation  

Tissues were homogenised using an electric homogeniser (Silent Crusher M, Heidolph, Germany) in 

RLT buffer (Buffer RLT Lysis Buffer, Qiagen USA), RNA was extracted and purified from stored tissues 

using a biopolymer shredding spin column (QIAshredder #79654, Qiagen USA) and the RNeasy Mini 

Kit (#74104, Qiagen) according to the manufacturer's instructions. RNA from cells was obtained by 

lysing cells in RLT buffer and proceeding immediately to RNA extraction with the RNeasy kit. RNA was 

quantitated using a nanodrop ND-1000 (Thermo Fisher Scientific, Scoresby, Victoria) RNA was stored 

at -80C in sterile RNAse free water. 

 

2.7.2 CDNA synthesis 

Complementary DNA was synthesised from 0.5-1 μg of RNA using random hexamer primers and the 

Superscript III RT kit (Invitrogen, USE) according to the manufacturer's instructions. 

 

2.7.3 Real time PCR  

Real time PCR was performed using Sybr Green PCR Master Mix (Applied Biosystems, UK) as per 

Cheng et al (251) with an ABI 7900HT thermal cycler (Applied Biosystems, UK).  A full list of primers 

can be found in Table 2.1.  Primers were designed using Primer 3. After design the primer sequences 

were blasted using Blastn against genomic mouse and transcript sequences to ensure specificity.  

After running the RTPCR the reaction product was run on an agarose gel to ensure a single product of 

the expected size.  All results from RTPCR were normalised to the house-keeping gene, TATA box 
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binding protein (TBP) which did not differ between experimental groups.  Fold change of mRNA 

expression was calculated using the 2∆∆CT method. 

 

2.8 Western immuno-blotting 

2.8.1 Protein preparation 

Cells were washed with PBS then lysed in cell lysis buffer.  Tissue was homogenised in cell lysis 

buffer. Protein was measured using the DC Protein Assay Kit (Bradford, USA) according to 

manufacturer’s instructions. 

 

2.8.2 Western blotting 

25µg of sonicated protein was run on an 8% sodium dodecyl sulphate-polyacrylamide (SDS-PAGE) gel 

in Western SDS running buffer using a Biorad Protein 3 apparatus. Protein was transferred onto a 

polyvinylidene difluoride (PVDF) membrane using a semi-dry method. Membranes were blocked with 

5% skim milk-PBST at RT for 1 hour.  Membranes were then incubated on a shaker overnight at 4°C in 

a solution containing 5% skim milk- PBST plus primary antibody.  A 1/500 dilution of ARNT (BD 

Bioscience Pharmingen, Australia) and a 1/1000 dilution of Alpha Tubulin (Abcam, San Francisco, CA) 

primary antibody was used.  Membranes were washed for 3 x 5min in PBST at room temperature 

(RT) before incubation with secondary antibodies. Membranes were then incubated with anti-mouse 

secondary antibodies linked to Horse Radish Peroxidase at a dilution of 1/1000 for 1 hour at RT (HRP, 

Immunopure Rat IgG thermoscientific). Membranes were again washed for 3 x 5min in PBST before 

incubation with Western Blot Luminol Reagent (Santa Cruz Biotechnology, Santa Cruz, California, 

USA) to visualize the protein bands via chemiluminescence on a ChemiDoc XRS (Biorad, Berkeley, 

California, USA). Alpha Tubulin was used as a loading control and signal intensity were quantitated by 

densitometry using ImageJ to calculate ARNT protein level relative to Alpha Tubulin level.  

 

 

 

2.9 Assays 

 

2.9.1 ATP 

Intracellular ATP content was measured using the ATP Bioluminescence Assay Kit CLS II (Roche, 

Australia.  Assay was performed according to manufacturer’s instructions and measurement of ATP 
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was performed using the TopCount NXT (Packard, USA).  Results were corrected for total protein as 

described in 2.5.3. 

 

2.9.2 Triglyceride assay  

Liver was homogenized (30-40mg per mouse) and used to determine total liver TG content which 

was expressed as µg/mg of liver. Serum and liver TG content was assayed using the Roche TG kit 

(GPO-PAP, Mannheim, Germany).  Absorbance was quantitated on SpectraMax™ Plus 384 (Molecular 

Devices, USA).  

 

2.9.3 Collagen assay quantification 

Collagen was quantified by staining liver sections with sirius red solution without Fast green (FCF). 

The percentage of red staining section (collagen) was calculated using ImageJ software.    

 

2.9.4 Insulin assay 

Serum insulin was measured by ELISA (Crystal Chem, USA) as per manufacturer’s instructions and 

absorbance quantified on SpectraMax™ Plus 384.  

 

2.9.5 Alanine transaminase (ALT) and Aspartate aminotransferase (AST) assay. 

Plasma ALT and AST levels were assayed by St Vincents Hospital Pathology. 

 

  

2.10 Statistical analysis 

For all figures, error bars indicate ± SEM.  For Students t-test, unpaired 2-tailed tests with unequal 

variance were used, calculated by Excel.  For repeated measures ANOVA, results were calculated 

using PRISM 5.  Pearson’s correlations were calculated and p-value from 2-tailed analysis also 

calculated with PRISM 5.  For non-parametric data, tests were performed using SPSS (v14).  A p-value 

of < 0.05 was considered significant. 
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Table 2.1 RTPCR primer list 

 

mRNA Fwd primer Reverse Primer 

Human ARNT aacctcacttcgtggtggtc caatgttgtgtcgggagatg 
 

Human TBP gttgagttgcagggtgtgg ctcaaaccaacttgtcaacagc 
 

Mouse Ahr agcagctgtgtcagatggtg ctgagcagtcccctgtaagc 

Mouse Akt2 cctgaggcttttctcaaacg cctcagtctcagcctcatcc 

Mouse AldoB agcacctctggctcaacaat gcttgatggcctctctgaac 

Mouse Arnt tctccctcccagatgatgac caatgttgtgtcgggagatg 

Mouse Cd36 tgctggagctgttattggtc caacagacagtcaaggct 

Mouse Collagen alpha 1 taggccattgtgtatgcagc acatgttcagctttgtggacc 
 

Mouse Cpt-1 cttccatgactcggctcttc 
 

agcttgaacctctgctctgc 
 

Mouse Chrebp gcatcctcatccgaccttta gatgcttgtggaagtgctga 

Mouse CXCL1 tggctgggattcacctcgaa tatgacttcggtttgggtgcag 

Mouse Elastin  atcctcttgctcaacctcct gcccctggataatagactcc 
 

Mouse Fas gaggacactcaagtggctga 
 

gtgaggttgctgtcgtctgt 
 

Mouse F16bp  gaccctgccatcaatgagta 
 

gttggcggggtataaaaaga 
 

Mouse F480 ctttggctatgggcttccagtc 
 

gcaaggaggacagagtttatcgtg 
 

Mouse G6pase tcggagactggttcaacctc 
 

acaggtgacagggaactgct 
 

Mouse Gk gagatggatgtggtggcaat 
 

accagctccacattctgcat 
 

Mouse Glut-1 acctatggccaaggacacac ctggtctcaggcaaggaaag 

Mouse Glut-2 catgctgagctctgctgaag acagtccaacggatccactc 

Mouse Hif1a tcaagtcagcaacgtggaag tatcgaggctgtgtcgactg 

Mouse Hif2a ctccaggagctcaaaaggtg agtgaagctggcaggtcaag 

Mouse Hmgr caaagtttgccctcagttca 
 

gtgccaactccaatcacaag 
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Mouse Hmgs gccgtgaactgggtcgaa 
 

gcatatatagcaatgtctcctgcaa 
 

Mouse Il-6 ccagagatacaaagaaatgatgg 
 

actccagaagaccagaggaaat 
 

Mouse Ir taccgcattgagctgcaggc 
 

aagacaaagatgaggggtcc 
 

Mouse Irs-1 tcccaaacagaaggaggatg 
 

cattccgaggagagcttttg 

Mouse Irs-2 gtagttcaggtcgcctctgc 
 

ttgggaccaccactcctaag 
 

Mouse Mcp-1 ggtccctgtcatgcttctgg  cctgctgctggtgatcctct 

Mouse Mmp9 gaaggcaaaccctgtgtgtt agagtactgcttgcccagga 
 

Mouse Pepck ctaacttggccatgatgaacc 
 

cttcactgaggtgccaggag 
 

Mouse Pfk atggcaaagctatcggtgtc 
 

acacagtcccatttggcttc 
 

Mouse Pgc1a gtcaacagcaaaagccacaa tctggggtcagaggaagaga 

Mouse Pgm cgaacttcaccttgctctcc tcaggccattgaggaaaatc 

Mouse Ppara tggcgtacgacaagtgtgat gtttgcaaagcctgggatag 

Mouse Pparg gaataccaaagtgcgatcaaagta 
 

ccaaacctgatggcattgtgagac 
 

Mouse Scd-1 cctgcggatcttccttatca gtcggcgtgtgtttctgag 

Mouse Sma gagaagcccagccagtcg ctcttgctctgggcttca 
 

Mouse Srebp1-c gagccatggattgcacattt 
 

ctcaggagagttggcacctg 
 

Mouse Tbp atgatgactgcagcaaatcg tatcactcctgccacaccag 

Mouse Timp-1 aggtggtctcgttgatttct gtaaggcctgtagctgtgcc 
 

Mouse Tgfβ1 tgagtggctgtcttttgacg ggttcatgtcatggatggtg 
 

Mouse Tnfα ccagaccctcactagatca 
 

cacttggtggtttgctacgac 
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Chapter 3. The role of ARNT in liver 
metabolism and fibrosis 
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3.1 Introduction  

In healthy individuals, the liver prevents hypoglycemia HGP from glycogenolysis and 

gluconeogenesis.  The liver also plays a key role in regulating serum lipids (157).  T2D is associated 

with inappropriate HGP in the setting of normal or raised glucose, and impaired insulin mediated 

suppression of HGP (49, 150). Dysregulation of HGP results in elevated fasting glucose levels, a key 

feature of T2D. HGP is higher in diabetic patients even after controlling for higher circulating 

glucagon (153). T2D is associated with dyslipidaemia, characterized by increased serum TG, often 

with pronounced postprandial hypertriglyceridaemia (48, 157, 158).  Dyslipidaemia contributes to 

the increased risk of cardiovascular complications in people with diabetes or the metabolic 

syndrome.  Studies in animal models show that liver dysfunction can be sufficient to lead to T2D and 

components of the metabolic syndrome (150, 389, 390).  The elucidation of the mechanisms leading 

to alterations of glucose and lipid metabolism in the liver is thus of importance to understanding the 

pathogenesis of T2D and the metabolic syndrome.  It was previously reported that there is decreased 

expression of ARNT in isolated pancreatic islets of patients with T2D (391).  While these studies were 

underway it was reported that ARNT was also reduced in the liver of T2D patients, and that short-

term adenovirus-induced hepatic ARNT deletion caused increased HGP and impaired glucose 

tolerance (252). 

 

The development of NASH and cirrhosis is a liver complication with increased prevalence in obesity 

and diabetes.  Obesity and diabetes related liver failure due to progression of NAFLD to NASH and 

cirrhosis is predicted to become the major cause for liver transplantation (8).  Interestingly acute 

increases in the level of liver ARNT partners HIF-1α and HIF-2α, via adenoviral-Cre mediated deletion 

of von Hippel-Lindau (Vhl) in the liver, leads to fatty liver with decreasing serum glucose levels (256). 

Also AhR activation and deletion both lead to hepatic steatosis (244, 248, 249). Of particular 

relevance, increased liver Hif2α has been linked to increased hepatic inflammation and AhR deletion 

been shown to increase liver fibrosis (243, 258).   

 

To create mice with hepatocyte deletion of ARNT the Cre-LoxP system was used with Cre expression 

under control of the hepatocyte specific albumin promoter. This results in Cre expression in the 

majority of hepatocytes with reported deletion efficiency in whole liver of 80% by southern blot in 

whole liver (392).  This promoter has a liver specific expression pattern with no recombination 

observed in pancreas, brain, liver, heart, spleen or kidney tissue.  
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It is clear from previous studies that liver ARNT and its partners are involved in liver metabolism, 

NASH and fibrosis. Given the fact that ARNT is reduced in people with type 2 diabetes the potential 

role of this gene in these processes was investigated. 

 

 

 

3.1.1 Aims and strategies  

To investigate the effects of long-term ARNT deletion in the liver, liver-specific ARNT-knockout 

(LARNT) mice were studied in three models: 

 

1) Mice were studied on standard chow diet. 

 

2) Mice were studied on high fat diet to determine the effect of reduced liver ARNT in a model 

of high fat diet-induced diabetes.  

 

3) In order to study the potential contribution of liver ARNT to liver fibrosis mice were studied 

in the thioacetamide model of liver fibrosis model.   
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3.2 LARNT mice on chow fat diet 

LARNT mice on chow diet were of equivalent weight to their FC littermates at all time points 

assessed. Mice weight at 10 weeks of age is shown (Figure 3.1A). 20 week old LARNT mice had a 

reduction of whole liver ARNT mRNA to 20.4±1.4% of FC (Figure 3.1B). LARNT mice also had 

significantly reduced liver ATP to 38.9 % of FC levels (P=0.0182) (Figure 3.1C).  
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Figure 3.1 Chow fed LARNT and FC weight, knockdown and ATP.  
Chow fed female mice data. (A)Weights FC (shown in blue bars) compared to LARNT (shown in red) 
(n=8/group). (B) Relative Arnt mRNA level in whole liver in FC compared to LARNT mice (n=5-6/group). (C) 
relative liver ATP in FC compared to LARNT mice (n=8-10/group). p<0.05=* by students ttest.  SEM shown  
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There were no obvious changes in liver histology in LARNT mice at 20 weeks of age compared to FC 

using H&E and Sirius Red staining (Figure 3.2).    

 

  

Figure 3.2 Histology of LARNT and FC chow fed liver.  
Haematoxylin and Eosin staining of liver sections from 20 week old FC (A) and LARNT (B) mice.  Sirius Red 
staining from FC (C) and LARNT (D) mice. Representative results are shown (n=5-7/group).   

 

 

 

3.2.2 Metabolism 

Fasting glucose levels were normal in floxed controls, and 42% higher in LARNT mice (p<0.001,Figure 

3.3A).  LARNT mice had mildly but significantly worse glucose tolerance than floxed-controls, shown 

in Figure 3.3B. Area under the curve of glucose tolerance was increased by 19% (p=0.026), Figure 

3.3C.  
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Figure 3.3 Glucose metabolism in chow fed LARNT mice.  
(A) Average fasting blood glucose levels in floxed control mice (FC) in blue and LARNT mice in (red).  (B) Glucose 
tolerance test FC (blue) and LARNT (red circles). (C) Area under the curve of glucose tolerance test. FC (blue) 
and LARNT mice (red bar). p<0.05=*by students ttest.  SEM shown (n=8-13/group) 
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Fasting serum insulin did not differ (Figure 3.4A). To assess whole-body insulin sensitivity, ITTs were 

performed. Results are presented as percentage fall from baseline because LARNT mice had higher 

fasting glucose.  LARNT and control mice had similar whole-body insulin sensitivity (Figure 3.4B).  

 

 

Figure 3.4 Serum insulin and insulin resistance in chow fed LARNT and FC mice.  
(A) Average fasting serum insulin levels. (B) Insulin tolerance test (ITT) of female FC (blue circles) and LARNT 
mice (red circles). Levels are expressed as a percentage of blood glucose level at 0 min. p<0.05=*by students 
ttest.  SEM shown  (n=5-6/group) 

 

 

To examine the effect of hepatic ARNT deletion on HGP, pyruvate challenge tests were performed. 

After overnight fasting, fasting glucose levels were higher, and glucose levels were significantly 

greater after pyruvate loading in LARNT mice (Figure 3.5A, p=0.005 by ANOVA for repeated 

measures).  Because the fasting glucose was greater, the results are also presented as the AUC of the 

increase from baseline fasting glucose. This was 22% higher in LARNT mice following pyruvate 

challenge (Figure 3.5B, p=0.021). 
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Figure 3.5 Hepatic glucose production (HGP) in chow fed LARNT and FC mice.  
(A) Pyruvate challenge tests (PCT) in FC and LARNT KO female mice.  FC mice are shown in blue circles LARNT 
mice are shown in red circles.  (B) Area under the curve (AUC) of PCT on female mice.  FC mice AUC shown by 
the blue column and LARNT mice in red. p<0.05=*by students ttest.  SEM shown (n=14-19/group). 
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Figure 3.6 Liver lipid, hepatocyte palmitate oxidation and liver ATP. 
(A) Liver triglyceride levels in FC and LARNT female mice. Liver TG is shown in fed and fasted states (darker and 
lighter bars respectively. FC blue and LARNT red (n=5-6/group).  (B) Lipid oxidation in isolated hepatocytes from 
male FC (blue bars) or LARNT animals (red bars), (n=9-11/group). p<0.05=*by students ttest.  SEM shown. 
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Figure 3.7 Serum triglycerides in LARNT and FC chow fed mice.  
(A) Serum TG’s in male FC and LARNT animals after a 16hr fast (n=5-6/group). (B) Serum TG in FC 6 hours after 
feeding with HFD (n=8-10/group). p<0.05=*by students ttest.  SEM shown. 
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3.2.4  Gene expression 

In the liver of LARNT mice, expression of glucose transporters 1 (Glut1) and 2 (Glut2) were 

decreased, expression of the transcription factor Carbohydrate responsive element binding protein 

(Chrebp) was increased and there was no significant change in Glucokinase (Gk) (Figure 3.8A).  There 

was a trend to increase in phosphoenolpyruvate carboxykinase (Pepck) expression, and there was 

increased Glucose 6-phosphatase (G6Pase) (Figure 3.8B). There were also significant decreases in 

mRNA for Insulin receptor (IR) and Insulin receptor substrate 2 (Irs2), with a trend to decreased 

Insulin receptor substrate 1 (Irs1) and Akt2 which may explain the trend to impaired ITT in LARNT 

mice (Figure 3.8B).  In line with increased Chrebp expression LARNT mice had significantly increased 

levels of lipogenic genes Stearoyl Co-A-desaturase 1 (Scd-1), Fatty-acid synthase (Fas) and HMGCoA-

synthase (Hmgs) (Figure 3.8C).  No changes were present in HMGCoA-reductase (Hmgr) (Figure 3.8C). 

No changes were present in other lipogenic genes including peroxisome proliferator-activated 

receptor alpha (Ppar-α) and gamma (Ppar-γ) (Figure 3.8D). There were no significant changes in the 

glycolytic genes phosphofructokinase (Pfk), Aldolase B (Aldob) or Phosphoglucomutase (Pgm) (data 

not shown).  
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Figure 3.8 mRNA expression changes in female 20 week old FC and LARNT mice. 
(A) Relative mRNA levels of glucose transporter 1 (Glut-1), Glucose transporter-2 (Glut-2),  Glucokinase (Gk) 
and Carbohydrate response element-binding protein (Chrebp), (D) Relative mRNA levels for 
Phosphoenolpyruvate carboxylase 1 (Pepck), Fructose-1-6-bisphosphatase (F16bp), Glucose-6-phosphatase 
(G6pase), Insulin receptor (Ir), Insulin receptor substrate 1 (Irs1), Insulin receptor substrate 2 (Irs2) and Akt2,.  
(E) Relative mRNA levels of Fatty acid synthase (Fas), Stearoyl-CoA-desaturase (Scd-1), HMG-CoA-Synthase 
(Hmgs) and HMG-CoA-Reductase (Hmgr).  (F) Relative mRNA levels of Peroxisome Proliferator-Activated 
Receptor-Gamma, Coactivator-1 Alpha (Pgc1a), Peroxisome Proliferator-Activated Receptor-Alpha (Ppara), 
Peroxisome Proliferator-Activated Receptor-Gamma (Pparg), Sterol regulatory element-binding protein 
(Srebp1-c) and Carnitine Palmitoyltransferase 1 (Cpt-1). (n=5-6/group).*p<0.05. **p<0.01, *** p<0.001 by 
students ttest. SEM is shown.  
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3.3 LARNT mice on a high fat diet 

 

3.3.1 Metabolism on HFD  

Both FC and LARNT female mice gained approximately 12g after 12 weeks of high fat diet and body 

weights were not significantly different (Figure 3.9A)  At 20 weeks the average weight of LARNT mice 

was lower than FC this change was not significant (Figure 3.9B).  

 

Figure 3.9 Weight of female FC and LARNT mice on HFD.  
LARNT compared to FC mice on HFD. Standard error bars are shown. * p <0.05. Weight was not significantly 
different between FC and LARNT mice fed HFD at 12 weeks (A) or 20 weeks (B). (n=8-10/group), p<0.05=*by 
students ttest.  SEM shown.  
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Histology was variable but overall there appeared to be no consistent significant patterns of fatty 

liver or of fibrosis (Figure 3.10). 

 

 

Figure 3.10 Histology of HFD fed FC and LARNT mice.  
Representative Haematoxylin and Eosin staining of liver sections from female FC (A) and LARNT (B) mice after 
20 weeks of HFD.  Sirius Red staining from HFD treated FC (C) and LARNT (D) mice. (pictures taken at 4X 
magnification). 250µM scale bar is shown. 
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Figure 3.11 Glucose and insulin tolerance in HFD fed mice.  
Glucose tolerance tests after HFD (A).  Insulin tolerance test (ITT) of FC and LARNT mice (B) expressed as a 
percentage of baseline blood glucose. (n=8-10/group), p<0.05=*by students ttest.  SEM shown.  
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Figure 3.12 Hepatic glucose production in HFD fed FC and LARNT mice.  
Pyruvate challenge tests (PTT) in FC and LARNT KO female mice (A). Area under the curve (AUC) of PTT (B). 
(n=8-10/group), p<0.05=*by students ttest.  SEM shown. 
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3.3.2 Lipid handling 

HFD fed LARNT mice had a trend to reduced hepatic TG content after overnight fasting (p= 0.09, 

Figure 3.13A).  ATP was no longer significantly different in LARNT compared to FC mice on HFD 

(p=0.119, Figure 3.13B).  

 

 

 

Figure 3.13 HFD hepatic triglyceride and ATP levels.  
Standard error bars are shown *p<0.05. (A) Triglyceride levels in whole liver in fasted HFD animals (P=0.09). (B) 
Hepatic ATP content in HFD mice (P=0.119). (n=5-6/group), p<0.05=*by students ttest.  SEM shown. 
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Figure 3.14 Serum triglyceride levels in HFD FC and LARNT mice.  
Serum triglyceride levels in fasted HFD fed mice (A).   Re-fed serum triglycerides in HFD fed mice (B). (n=5-
6/group), p<0.05=*by students ttest.  SEM shown. 
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(p=0.019). There was a trend to increased Hif1a but this did not reach significance (p=0.1, Figure 

3.16). 

 

 

Figure 3.15 ARNT expression in FC on chow and HFD.   
Changes in ARNT expression after HFD. Standard error bars are shown *p<0.05 (A) ARNT mRNA in FC animals 
fed chow (black) or HFD (grey).  (B) Representative western blot for ARNT in WT chow fed compared to HFD fed 
animals. Alpha Tubulin shown as loading control. (C) Densitometry of ARNT western blot. ARNT levels were 
normalised to tubulin expression. Relative levels shown. (n=5-6/group), p<0.05=*by students ttest.  SEM 
shown. 
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Figure 3.16 mRNA changes in FC on HFD.  
Changes in gene expression after HFD. Standard error bars are shown *p<0.05. Relative level of Ahr, Hif1a and 
Hif2a and Chrebp mRNAs in FC animals fed chow or HFD. (n=5-6/group), p<0.05=*by students ttest.  SEM 
shown. 
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Figure 3.17 mRNA expression in FC and LARNT mice at 20 weeks HFD.  
Changes in gene expression after HFD. Standard error bars are shown. (A) Relative mRNA levels of Chrebp, Glut-
1, Glut-2, F16bp, Pepck and G6pase.  (B) Relative mRNA levels of Cpt-1, Fas, Scd-1, Hmgs and Hmgr. *p<0.05. 
**p<0.01, *** p<0.001 by students ttest, (n=6/group), SEM shown. 
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3.4 Thioacetamide-induced liver fibrosis 

To investigate the potential role of ARNT in liver fibrosis we studied LARNT and FC mice on the 

thioacetamide (TAA) model of liver fibrosis.  After 13 weeks of TAA treatment there was no obvious 

difference in the extent of fibrosis via histology (Figure 3.18).  To confirm observations collagen 

content was assessed by quantitating histological collagen staining with ImageJ.  There was a 

significant reduction in collagen content in LARNT mice compared to FC (Figure 3.19, p =0.019).  

 

 

 

 

Figure 3.18 Histology from TAA treated FC and LARNT mice.  
Representative Haematoxylin and Eosin staining of liver sections from male FC (A) and LARNT (B) mice after 13 
weeks of TAA injection.  Sirius Red staining from TAA treated FC (C) and LARNT (D) mice. (Pictures taken at 4X 
magnification). (n=6-7/group). 
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Figure 3.19 Average collagen content in TAA treated mice.  
Percentage of histological area covered by collagen in FC (purple column) and LARNT (red column) livers after 
TAA treatment, (n=5-7/group), p<0.05=*by students ttest. +/- SEM is shown. 
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3.5 Discussion  

 

Hepatocyte ARNT deletion resulted in impaired glucose tolerance, increased glucose production after 

pyruvate challenge and increased postprandial serum triglycerides. These changes are similar to 

changes seen in people with T2D and metabolic syndrome.  Assessment of liver ATP and triglyceride 

content showed that both were significantly reduced in LARNT mice in fasted animals, however these 

alterations became non-significant with HFD feeding. HFD caused a reduction in liver Arnt mRNA in 

control animals, but surprisingly no apparent reduction in total ARNT protein. 

 

People with T2D have increased HGP (6).  PEPCK is a critical enzyme in gluconeogenesis (393, 394) 

and is increased in the setting of T2D (395).  G6Pase catalyses the final step in gluconeogenesis and is 

increased in diabetic animals (394, 396). We have found increased expression in G6pase and a trend 

to increased Pepck in chow fed LARNT mice.  

 

It has recently been demonstrated that by magnetic resonance spectroscopy that both ATP and flux 

through ATP (fATP) are reduced in the livers of T2D patients compared to age matched controls (397, 

398). Further liver ATP correlated with hepatic insulin sensitivity even after controlling for 

hepatocyte lipid content (398).  We found that hepatic ARNT deletion in LARNT animals resulted in 

basally decreased liver ATP and this reduction in ATP occurred alongside increased HGP.     

 

In contrast to the results of acute ARNT ablation using adenoviral Cre-recombinase (252) in this study 

we found no change in fasting insulin level.  In common with short-term deletion, long-term loss of 

ARNT also led to alterations in gluconeogenic and lipogenic mRNAs in the liver, and increased HGP. 

Mice lacking ARNT in the long-term also had mildly worsened glucose tolerance. Short term ARNT 

deletion also led to reduced hepatic triglyceride after fasting. Interestingly a decrease in ARNT 

protein after streptozotocin induced diabetes was also reported (252). We report here a reduced 

level of Arnt mRNA after HFD, which is also found in the liver of type 2 diabetic patients, although we 

did not find a reduction in total ARNT protein (252). It is also known that the activity of Hif1α is 

reduced in the setting of diabetes (380, 383). These studies are supportive of a role for perturbations 

in the regulation or function of ARNT and its partners in the diabetic milieu.  We hypothesise that the 

decrease in Arnt mRNA may be mediated by ChREBP in response to increased glucose, as is the case 

in pancreatic β-cells (399), and we found increased Chrebp expression in FC mice after HFD.  

Quantification of the relative proportions of nuclear versus cytoplasmic ARNT protein would  give a 
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more accurate indication of the amount of active transcription by ARNT and its partners and would 

be interesting in future studies.   

 

Perturbations resulting in increased Hif1α and Hif2α have been found to result in hepatic steatosis, 

reduced serum glucose levels, reduced HGP and reduced lipid oxidation, which, if left un-countered 

results in death (256, 258).  In particular increased liver Hif2α has been linked to hepatic steatosis 

and inflammation (257, 258). The present data complements these studies finding the reverse 

phenotype in respect to serum glucose levels after fasting, HGP and reduced liver TG content after 

fasting in the setting of reduced ARNT. It is also noteworthy that there was increased Hif2a and a 

trend to increased Hif1a mRNA in HFD fed FC mice, although protein levels or activity were not 

assessed. HIF-1α has also been found to be elevated in a mouse model of alcohol induced steatosis 

(259).  HIF-1α deletion in hepatocytes protected mice from liver steatosis and hepatomegaly 

following alcohol feeding, and from elevated ALT levels following subsequent LPS challenge in this 

study. The steatotic effects after alcohol feeding and LPS challenge were subsequently found to be 

regulated by hepatocyte MCP-1 (259).  However, in a recent study the opposite effect was found in 

terms of steatosis (400).  

 

 

The alterations in lipid handling following ARNT deletion are noteworthy in that despite hepatic 

insulin resistance, these mice showed reduced hepatic lipid content on fasting compared to controls. 

Lipogenic gene expression was increased in these animals and lipid oxidation was reduced in culture, 

suggesting that liver triglyceride content should have been elevated. The mechanism for this effect is 

unclear, but may relate to alterations in lipid import into the liver. With feeding, serum triglyceride 

increased in ARNT knockout mice, suggesting that increased fatty acid synthesis and reduced lipid 

oxidation may also result in increased hepatic triglyceride export.  Again, the lipid handling 

differences were abrogated on high fat feeding.   

 

Although increased Fas and Srebp1-c expression remained in LARNT mice on HFD again this did not 

result in increased triglyceride levels in the livers of these mice.  Interestingly HFD mice had increased 

Cpt-1 expression which may indicate an increased lipid oxidation in the liver of LARNT mice on HFD 

resulting in decreased export and a possible explanation for the equivalent serum TG levels.   

 

It was also found that long term ARNT deletion decreased collagen content in TAA treated mice, 

although it did not change the extent of fibrosis as scored by the criteria outlined by Kleiner et al 
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(2005).  This is in line with the reported increased inflammation and fibrogenic gene expression in 

mice over expressing Hif2a in the liver (258). Importantly this indicates that hepatocyte ARNT and its 

partners are not an absolute requirement for fibrosis initiation but instead influence the extent of 

collagen deposition. 

 

These results demonstrate that ARNT is an upstream regulator of hepatic glucose and lipid 

homeostasis. The increased HGP reduced hepatic ATP and increased fasting serum triglyceride in 

ARNT deleted mice are also found in the diabetic liver. These findings combined with that of reduced 

mRNA in HFD fed mouse liver suggested that this pathway is perturbed in the setting of diabetes, 

although surprisingly we did not find a corresponding reduction in total ARNT protein. The 

mechanisms of this disconnect are unclear; however modulation of the activity of ARNT and its 

partners may hold future promise in the management of diabetes.   
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Chapter 4. The role of myeloid cell ARNT in 
metabolism and NASH 
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4.1  Introduction 

In the past decade evidence has accumulated for the role of chronic low grade inflammation in the 

development of insulin resistance and T2D (167, 179).  Obesity and the metabolic syndrome are 

associated with chronic low grade inflammation as measured by elevated cytokine production, 

increased acute phase proteins and activation of inflammatory pathways (168, 401).  It is thought 

that this inflammation is mediated in large part by inflammatory activation of macrophages 

populating metabolic tissues.  In line with this, obesity is known to be associated with inflammatory 

macrophage infiltration of adipose tissue with osteopontin and MCP-1 playing a role (175, 195, 198).  

Furthermore, a reduction of adipose infiltration by macrophages by Resolvin D1 treatment is 

associated with improvement of metabolic parameters (402).  Further supporting the importance of 

macrophages in metabolism a number of myeloid and macrophage specific knockout mice which 

alter macrophage function have been found to have altered insulin resistance and changes in glucose 

metabolism (182-186).   

 

NASH is the most common chronic liver disease in developed countries, and is associated with insulin 

resistance, obesity and type 2 diabetes (147, 403).  Liver macrophages have also been shown to play 

a key role in the development of non-alcoholic steatohepatitis (NASH) and fibrosis, both in the 

inflammatory and resolution phase (122-124, 127).  Of particular relevance, Adenoviral-Cre mediated 

deletion of von Hippel-Lindau (Vhl) leading to increased liver Hif2α, a partner of ARNT, has been 

linked to increased hepatic inflammation (258).  AhR deletion, another ARNT binding partner, has 

also been shown to increase liver fibrosis (243, 258).   

 

The importance of HIF-1α in myeloid cell immune function was shown by Cramer et al (2003) who 

found decreased immune function in mice with myeloid cell deletion of this gene.  Subsequently it 

was found that HIF-1α is important in regulating apoptosis, chemotaxis, phagocytosis and bacterial 

killing in myeloid cells (238, 266).  To date the potential role of myeloid cell ARNT in glucose 

homeostasis and non-alcoholic steatohepatitis has not been investigated.  The results presented in 

this chapter show that deletion of ARNT in myeloid cells results in impairment of GTT and increased 

NASH on HFD.  
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4.1.1 Aims and strategies 

To investigate the effects of long-term ARNT deletion in innate immune cells on metabolism, myeloid 

cell-specific ARNT-knockout  mice were studied on chow and high fat diet: 

 

1) Metabolism was assessed on chow diet. 

 

2) Mice were studied on high fat diet to determine what effect myeloid cell ARNT deletion 

had on whole body metabolism, weight gain and markers of Non-alcoholic 

steatohepatitis.  
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4.2 LAR mice metabolism on chow and HFD 

Myeloid cell-specific ARNT-knockout (LAR) and FC female and male mice had equivalent weight on 

chow diet (Figure 4.1A and B).  Glucose tolerance was also equivalent on chow diet, however male 

mice had a slight trend towards impaired glucose tolerance (p=0.1 by repeated measures ANOVA, 

Figure 4.2B).   

 

 

Figure 4.1 LAR weight on chow diet.   
FC female mice shown in blue, LAR female mice in red, FC male mice in green and male LAR mice in orange.  (A) 
Female FC and LAR weight on chow diet, (n=13-14/group).  (B) Male FC and LAR mice on chow diet, (n=12-
14/group).   p<0.05=*by students ttest. +/- SEM is shown. 
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Figure 4.2 Glucose tolerance in chow fed mice.  
FC female mice shown in blue, LAR female mice in red, FC male mice in green and male LAR mice in orange.  (A) 
GTT of female FC and LAR mice on chow diet, (n=13-14/group). (B) Male LAR mice had a trend to impaired GTT 
compared to FC, (n=14-16/group). p<0.05= # by repeated measures ANOVA. +/- SEM is shown.  
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At 5 and 10 weeks of HFD both female LAR (p = 0.04, p =0.0036 by repeated measures ANOVA, Figure 

4.3A and C) and male LAR mice (p= 0.01 and p= 0.02 by repeated measures ANOVA Figure 4.3B and 

D) had impaired glucose tolerance compared matched FC.  A subsequent ITT showed no significant 

difference by repeated measures ANOVA but a small significant increase in blood glucose level in 

female LAR mice at 20 and 45 minutes (Figure 4.3E, p=0.05 and 0.03 respectively by students ttest). 

Surprisingly male LAR mice had significantly decreased blood glucose level compared to FC mice at 60 

minutes by students ttest (Figure 4.3F, p=0.03). This suggests no major decrease in peripheral insulin 

sensitivity to account for impaired glucose tolerance in LAR mice. 
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Figure 4.3 Metabolism in mice after 5 and 10 weeks of HFD.  
FC female mice shown in blue, LAR female mice in red, FC male mice in green and male LAR mice in orange.  (A) 
Glucose tolerance after 5 weeks of HFD in female mice, (n=13-14/group). (B) Glucose tolerance after 5 weeks of 
HFD in male mice, (n=14-16/group). (C) Glucose tolerance after 10 weeks of HFD in female mice, (n=13-
14/group).  (D) Glucose tolerance after 10 weeks of HFD in male mice, (n=14-16/group). (E) Insulin tolerance 
after 11 weeks of HFD in female mice, (n=8-9/group). (F) Insulin tolerance after 11 weeks of HFD in male mice, 
(n=10-13/group). Average +/- SEM is shown. * p<0.05 by students t-test. # p< 0.05 by repeated measures 
ANOVA. 
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At 15 and 20 weeks of HFD female glucose tolerance remained impaired compared to FC animals 

(p=0.01 for both by repeated measures ANOVA, Figure 4.4A and C).    At 15 weeks of HFD male LAR 

mice had equivalent GTT to FC animals (Figure 4.4B). At 20 weeks fasting blood glucose levels were 

significantly decreased in LAR males (students ttest, p=0.045) and there was a trend to decreased 

glucose levels throughout the glucose tolerance test (Figure 4.4D, p=0.0637 by repeated measures 

ANOVA).  It is noteworthy that the average blood glucose levels in both LAR and FC male and female 

mice were significantly decreased compared to GTT results at 15 weeks.   

 

 

  

Figure 4.4 Glucose tolerance tests after 15 and 20 weeks of HFD.  
FC female mice shown in blue, LAR female mice in red, FC male mice in green and male LAR mice in orange. (A) 
Glucose tolerance after 15 weeks of HFD in female mice, (n=13-14/group). (B) Glucose tolerance after 15 weeks 
HFD in male mice, (n=11-13/group). (C) Glucose tolerance after 20 weeks in female mice,  (n=13-14/group). (D) 
Glucose tolerance after 20 weeks in male mice, (n=12-14/group). Average +/- SEM is shown. # p<0.05 by 
repeated measures ANOVA. 
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At 20 weeks of high fat diet there was no significant difference in PTT results of female LAR and FC 

mice (Figure 4.5A).  There was a trend to decreased blood glucose level in male LAR mice after 

pyruvate challenge (p=0.09 by repeated measures ANOVA, Figure 4.5B). And blood glucose was again 

decreased in male LAR mice after fasting (Time 0, p=0.02 by students ttest).  There was no overall 

difference in ITT results by repeated measures ANOVA for LAR mice compared to FC in either sex.  

However, female LAR mice still showed a small increase in blood glucose at 45 minutes (p=0.05 by 

students ttest) and male LAR mice a small trend to a decrease in blood glucose compared to FC mice 

at 60 minutes (p=0.065 by students ttest, Figure 4.5C and D). 

 

 

 

Figure 4.5 Pyruvate challenge and insulin tolerance tests at 20 weeks. 
FC female mice shown in blue, LAR female mice in red, FC male mice in green and male LAR mice in orange. (A) 
Pyruvate challenge results in female mice after 20 weeks of HFD, (n=6-7/group). (B) Pyruvate challenge results 
in male mice after 20 weeks of HFD, (n=8-13/group). (C) Insulin tolerance for female mice after 20weeks HFD, 
(n=6-7/group). (D) Insulin tolerance test for male mice after 20 weeks, (n=7-10/group).  Average +/- SEM is 
shown. * p<0.05 by students t-test. # p< 0.05 by repeated measures ANOVA. 
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4.3 Weight gain in LAR mice on HFD 

Male LAR mice had equivalent weight gain throughout the study (Figure 4.6A).  Female mice had 

increased weight or a trend to increased weight at weeks 8-14 (P= 0.05, 0.07, 0.04 and 0.06 by 

students t-test, Figure 4.6A).  When expressed as weight gain female LAR mice gained weight more 

rapidly than their FC counterparts (p=0.04, by repeated measures ANOVA, Figure 4.6B), although 

total weight gain at completion of the study was not significantly different (p=0.19 at 20 week time 

point, by students t-test).   

 

 

Figure 4.6  LAR weight gain on HFD.  
FC female mice shown in blue, LAR female mice in red, FC male mice in green and male LAR mice in orange. (A) 
Weight in LAR and FC male (n=14-16/group) and female mice (n=13-14/group) during the HFD study. (B) 
Weight gain in female mice during the HFD study, (n=13-14/group). Average +/- SEM is shown. * p<0.05 by 
students t-test. # p< 0.05 by repeated measures ANOVA. 
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4.3.2  Tissue weights after HFD. 

Female LAR mice had equivalent tissue weight compared to FC after 20 weeks of HFD (Figure 4.7A).  

Although male LAR mouse body weight did not differ from FC weight throughout the experiment 

they had a significant increase in subcutaneous fat (p=0.04, by students ttest, Figure 4.7B).  There 

was also a trend to reduced liver weight in male LAR mice after HFD (p=0.092, by students ttest).     

 

 

Figure 4.7 Tissue weights after HFD.  
FC female mice shown in blue, LAR female mice in red, FC male mice in green and male LAR mice in orange. (A) 
Female tissue weights after 20 weeks HFD, (n=12/group). (B) Male tissue weights after 20 weeks of HFD, (n=13-
15/group).  Epigonadal fat pad (Epi), subcutaneous fat pad (SC). Average +/- SEM is shown. * p<0.05 by 
students t-test. 
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4.3.3  Fat cell size quantification of male LAR mice. 

Although the average epigonadal fat pad weight was equivalent in LAR male mice after 20 weeks of 

HFD there was a trend for increased fat cell size (p=0.075 by students ttest, Figure 4.8A and B, Figure 

4.9).  As expected there was a significant increase in subcutaneous fat cell size after 20 weeks of HFD 

in male LAR mice compared to FC (p=0.04 by students ttest, Figure 4.8C and D, Figure 4.9).  

 

  

 

 

Figure 4.8 Epigonadal and SC fat after 20 weeks HFD.  
Representative pictures taken at 4X magnification scale bars shown.  FC and LAR male epigonadal fat H&E (A 
and B). FC and LAR male subcutaneous fat H&E (C and D).  
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Figure 4.9 Quantification of fat histology.  
FC mice shown in green and LAR mice in orange.  Average size of fat cells is shown. Epigonadal fat pad (Epi), 
subcutaneous fat pad (SC). Average +/- SEM is shown. * p<0.05 by students t-test, (n=5-7/group). 
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4.4 NASH and fibrosis in LAR mice  

In order to assess the potential contribution of myeloid cell ARNT to development of NASH we next 

assessed liver histology.  Histology of mice which had revieved HFD for 20 weeks was assessed by a 

blinded and independent pathologist, Andrew Clouston, for the inflammatory changes of NASH and 

fibrosis using the scoring system outlined by Kleiner et al 2005 (22).  Representative histology results 

for male FC and LAR mice are shown in Figure 4.10. As a percentage female LAR mice had increased 

prevalence of fatty liver diagnosis compared to FC, and one female LAR mouse had NASH Table 4.1).  

More male mice had NASH than female mice with 9 of 14 male LAR mice qualifying as having NASH, 

and only 3 of 10 FC mice (Results summarised inTable 4.1).  Male LAR mice had a small but significant 

increase in inflammation score (LAR average = 0.9285, FC = 0.3, p =0.041293 by students ttest). NASH 

Activity Score (NAS) was also significantly elevated in LAR male mice compared to FC (Average LAR 

NAS= 4.5, average FC NAS = 2.25, p=0.033727 by students ttest) 
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Figure 4.10 Liver histology in LAR mice.  
Representative Haematoxylin and Eosin staining of liver sections from FC HFD (A) and LAR HFD (B) mice.  Sirius 
Red staining from FC HFD (C) and LAR HFD (D) mice.  Pearls stain liver from FC HFD (D) and LAR HFD (E). F480 
staining of FC (F) and LAR HFD (G) fed mice. F480 positive cells are brown. 
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Table 4.1 Summary of histological NASH scoring for male LAR mice after HFD. Average +/- SEM is 

shown. Results of students t-test comparing FC and LAR scoring for each gender is shown. Females 

(n=10/group), males (n=10-14/group).  

 

Gender 

and 

Genotype 

Steatosis 

grade 

 

Hepatocye 

Ballooning 

Lobular 

Inflammation 

NAS Fibrosis 

(METAVIR) 

Diagnosis 

NAFLD 

Diagnosis 

NASH 

Male FC 2.2±0.25 0.7±0.21 0.3±0.15 2.5±0.48 0.2±0.13 70% 30% 

Male LAR 2.42±0.14 0.92±0.22 0.66±0.25 4.5±0.78 0.29±0.13 35.7% 64.3% 

ttest 0.09 0.13 0.03 0.03 0.21   

Fem FC 0.3±0.15 0 0 - 0 30% 0% 

Fem LAR 0.9±0.28 0.1±0.1 0.2±0.2 - 0.1±0.1 50% 10% 

ttest 0.08 0.34 0.34 - 0.34   
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On quantification there was a trend to increased TG content in livers of LAR HFD fed male mice 

(p=0.1 by student ttest), and there was no significant change in collagen content compared to FC 

using Image J to quantitative collagen content (Figure 4.11A and B) 

 

 

Figure 4.11 Liver TG and collagen content.  
FC shown in green and LAR in orange. (A) TG content of FC and LAR HFD liver, (n=5-7/group). (B) Collagen % 
surface area of FC and LAR liver, (n=5-9/group).  Average +/- SEM is shown. * p<0.05 by students t-test. 
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The increased macrophage infiltration hinted at by F480 staining (Figure 4.10 F and G) was confirmed 

by assessing liver mRNA expression of F4/80, which was significantly increased in LAR HFD mice 

(p=2.59E-7 by students ttest, Figure 4.12A).   

 

Due to the increased inflammatory changes observed by histology in male LAR mice, the expression 

of cytokine mRNA was examined (Figure 4.12B). Expression of Mcp-1, Tnf-α and Tgf-β1 were 

significantly increased (p=6E-5, 6.7E-8 and 0.002 respectively by students ttest). There was no change 

in Il-6 mRNA expression.  

 

 

 

Figure 4.12 F4/80 and cytokine mRNA expression in liver.  
FC liver expression show in green and LAR liver expression in orange.  (A) Expression of mRNA for macrophage 
marker F480 in liver. (B) Expression levels of Mcp-1, Il-6, Tgf-β1 and Tnf-α. Average +/- SEM is shown. * p<0.05 
by students t-test, (n=5-6/group). 
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Although NASH was evident histologically there was no significant difference in serum levels of 

alanine transaminase (ALT) or aspartate transaminase (AST) (Figure 4.13A and B).  

 

 

 

Figure 4.13 Liver function tests.  
FC results shown in green and LAR in orange. Median is shown.  (A) Serum ALT levels. (B) Serum AST levels. 
Average +/- SEM is shown. * p<0.05 by students t-test, (n=5-7/group). 
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4.5 Discussion 

 

Mice lacking myeloid cell ARNT had impaired glucose tolerance after 5 - 10 weeks of HFD. Female 

LAR mice had impaired GTTs throughout the study with a small increase in insulin resistance as 

assessed by ITT at 11 and 20 weeks.  Female LAR mice gained weight on HFD more rapidly than their 

FC counterparts, whereas male LAR mice showed equivalent weight gain to FC animals.  After 20 

weeks HFD female LAR mice had a higher prevalence of histologically defined fatty liver, while male 

LAR mice had increased NASH with increased liver macrophage infiltration and inflammatory 

cytokine expression.   

 

The results of this chapter add to the growing list of myeloid cell perturbations which result in altered 

metabolic function.  The cause of this impairment of glucose tolerance is unclear. In female LAR mice 

the impaired glucose tolerance may in part be explained by the small but significant increase in 

insulin resistance as assessed by ITT.  In male mice the mechanism requires further investigation, 

with a lack of peripheral insulin resistance being demonstrated. However ITT’s were not performed 

at time points earlier than 11 weeks and at 15 weeks of HFD glucose tolerance was equivalent in FC 

and LAR male mice.  Increased cytokine production and in particular IL-1β are known to impair B-cell 

function (199, 404). It has also been shown that IL-1β blockade is effective in increasing B-cell 

function in human trials (405).  It is known that macrophages associate with islets during HFD (406).  

It may be that increased macrophage cytokine expression led to impairment of β-cell function and 

insulin secretion during the first 10 weeks of high fat diet, but β-cell function of LAR mice on HFD 

remains to be determined.  

 

 It is noteworthy that male FC and LAR blood glucose levels were both decreased after glucose 

challenge at 20weeks compared to 15weeks of HFD, although blood glucose levels in LAR mice 

decreased further.  This corresponded to increased prevalence of NASH in male mice compared to 

females and a further increase in LAR males compared to FC.  This increased NASH was also 

accompanied by decreased fasting glucose levels in male LAR mice and a trend to reduced 

gluconeogenesis as assessed by PTT, which suggested impaired HGP in LAR male mice. This also 

corresponded to a trend to reduced liver weight in LAR mice compared to FC, in the face of a trend to 

increased TG content.   Importantly mRNA for Tnf-α was found to be increased in LAR animals and 

increased TNF-α is associated with disease progression in humans (113). TNF-α is believed to play a 
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central role in the pathogenesis of NASH through increasing hepatocyte damage and apoptosis (114).  

The non-significant elevation in collagen content of LAR HFD livers may also hint at a role for 

macrophage ARNT in liver fibrosis.  Assessment of liver collagen of these mice using the TAA model 

of liver fibrosis would be useful to answer this, unfortunately this study could not be undertaken due 

to time constraints.  The finding of increased cytokine expression and inflammation in the liver after 

HFD is unexpected when taken together with work showing decreased immune function in acute 

models in myeloid Hif-1α (238, 266, 267) and ARNT knockout animals (presented in the following 

chapter).  Nonetheless this is congruent with the clinical picture of T2D, where patients have 

increased markers of chronic inflammation alongside defective immune function with an increased 

risk of infection and sepsis (167, 179, 331).   

 

These results suggest myeloid cell ARNT may be therapeutic target to reduce liver inflammation in 

diabetes and other causes of liver cirrhosis.   Although supraphysiological elevations of ARNT and 

hence the ARNT/Hif-2α pair should be avoided because of the recent finding that increased in liver 

Hif-2α also drives inflammation (258).  It is noteworthy that the known human polymorphism 

(Arg554Lys) of the transactivation domain of AhR has recently been shown to reduce both AhR and 

ARNT expression in white blood cells (407). The correlation of this polymorphism to prevalence and 

outcome of liver disease and particularly NASH patients give some information about the 

contribution of ARNT to human liver disease.   

 

The results in this chapter show that myeloid cell ARNT regulates whole body metabolism and 

development of NASH.  The mechanism of the impaired glucose tolerance requires further 

investigation, but may be explained in part in female mice by impairment in insulin sensitivity.  It is 

apparent that loss of myeloid cell ARNT drives increased cytokine transcription and inflammation in 

the liver and exacerbates HFD induced liver damage.  Myeloid cell ARNT may be a therapeutic target 

to reduce blood glucose levels and liver injury in obese and diabetic patients. 
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Chapter 5. The role of myeloid cell ARNT in 
immune function and wound healing. 
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5.1  Introduction 

The innate immune system functions as the first line of defence against infection.  Mononuclear 

phagocytes and neutrophils are the key effector cells and function in elimination of pathogens, 

modulation of the adaptive immune system and tissue repair.  An increasingly common cause of 

immune dysfunction is diabetes mellitus.  Diabetes increases the risk of infection, ulcer formation 

and delayed wound healing (324, 331, 408). Monocyte and neutrophil dysfunction are involved in 

these processes (317, 331, 333, 409, 410). Studies demonstrate impaired chemotaxis, phagocytosis 

and killing of bacteria in diabetic polymorphonuclear cells and monocytes/macrophages compared to 

normal controls. Wound healing in diabetes is delayed compared to controls and is characterised by 

alterations in number and function of myeloid cells, with available evidence pointing to a persistence 

of dysfunctional macrophages (317, 333, 335, 409, 410). 

 

ARNT is a transcription factor of the bHLH-PAS family (basic helix-loop-helix Per/ARNT/Sim). In 

immune cells ARNT binds with its partners Aryl hydrocarbon Receptor (AhR) and Hypoxia Inducible 

Factor 1 Alpha (HIF-1α) to mediate responses to environmental toxins, immune function (AhR) and 

the hypoxic response (HIF-1α)(221).  The importance of HIF-1α in innate immune function was shown 

by Cramer et al (238) who found decreased immune function in mice with myeloid cell deletion of 

this gene.  Subsequently it was found that HIF-1α was important in regulating apoptosis, 

phagocytosis and bacterial killing (238, 266, 267). 

 

HIF-1α activity is reduced at high glucose concentrations in human fibroblasts and diabetic animals 

(380-382), and is decreased in human diabetic ulcers and with increasing age in db/db mice (383, 

384).  Correspondingly, artificially elevating the level of HIF-1α through desferoxamine (DFO), CoCl2 

or constitutively active HIF-1α producing constructs lead to improved wound healing in models of 

diabetes (381, 382). We previously reported that ARNT is decreased in islets and in the liver of T2D 

patients and reduction of ARNT in both these tissues results in impairment of function (225, 252).  

Intriguingly high glucose has been found to reduce ARNT expression in islets via ChREBP activation, 

demonstrating another direct link between glucose and the functioning of ARNT and its partner HIF-

1α (399). From this accumulating evidence it is possible that diabetes also causes alterations in the 

ARNT expression in multiple tissues and cell types and this further contributes to the diabetic 

phenotype.  

 

To create myeloid cell ARNT deletion we used the Cre-LoxP system with Cre expression under control 

of the Lysozyme M promoter (388).  Lysozyme M is an antimicrobial protein expressed in 
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granulocytes, macrophages and their precursers  (411). Although recent studies have demonstrated 

that LysM expression is not completely restricted to myeloid cells, with LysM expression evident in 

alveolar type II cells of the lung and in myocardial cells which form the intraventricular septum, this is 

an accepted system which has been used in multiple studies to investigate the function of myeloid 

cells (411-413).   LysM Cre mice were initially described as having high deletion efficiency in 

macrophages and neutrophils (75-95% and 79-99% respectively), with 16% deletion in CD11c-

positive DC and minimal deletion in T and B cell lymphocytes (388).   Subsequent studies have shown 

reduced effectiveness with a variable percentage of Enhanced green fluorescent protein (EGFP) 

expression reported in peritoneal macrophages isolated from LysM-EGFP mice (around 60%) and 

blood monocytes isolated from LysM-Cre × Rosa26-stop flox EGFP mice (55-75%) in previous studies, 

with a higher deletion efficiency (93%) in neutrophils  (414, 415).   

 

As the required partner, ARNT integrates signals from HIF1α, HIF2α and AhR. To date the role of 

macrophage and neutrophil ARNT in immune function and wound healing has not been examined.  

Here we present evidence that myeloid cell ARNT plays a key role in immune function and wound 

healing.  The results suggest reduced macrophage ARNT/ HIF-1α transcription may be a component 

of impaired wound healing in diabetes and represent a therapeutic target to improve immune 

function and wound healing in diabetic patients.   
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5.1.1  Aims and strategies 

To investigate the effects of long-term ARNT deletion in myeloid cells including; response to 

infection, inflammation and wound healing.  Myeloid cell-specific ARNT-knockout mice were studied 

on chow diet: 

 

1) To investigate the effect of myeloid cell ARNT deletion on immune function.  

 

2) To investigate the role of myeloid cell ARNT in models of infection and inflammation. 

 

3) To investigate the role of myeloid cell ARNT on wound healing with or without diabetes. 
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5.2 The role of ARNT in myeloid cell function. 

The average number of thioglycollate elicited macrophages isolated from myeloid cell-specific ARNT-

knockout (LAR) mice was similar to that in controls suggesting grossly similar migration (FC average 

14.7x106 and LAR average 14.3x 106, p>0.9, by students ttest). Macrophage Arnt mRNA was reduced 

to 50% of control levels in thioglycollate elicited LAR macrophages after 24 hours of LPS treatment 

(Figure 5.1A). This relatively modest deletion efficiency is consistent with previous studies (414, 

415). After 24 hours of LPS stimulation, LAR macrophages had significantly reduced Cxcl1 

(p=0.0002), Mcp-1 (p = 2.78E-07), Tgf-β1 (p = 1.62E-05) and Il-6 (p = 0.002) expression by students 

ttest.  There was no change in Tnf-α (p = 0.2) (Figure 5.1A). 

 

Blood monocyte and granulocyte phagocytosis was next assessed in whole blood. LAR animals 

showed reduced bacterial uptake compared to FC animals in blood granulocytes 80% (p<0.001 by 

students ttest) and a trend to reduced monocyte uptake (76% of FC, p=0.08 by students ttest, Figure 

5.1B).  Although LAR granulocytes phagcytosed fewer bacterial particles than FC, there were 

approximately 10 times the number of surviving Group A streptococcal (GAS) intracellular bacteria 

isolated from whole blood lymphocytes (p=0.01 by students ttest). This suggests both impaired 

phagocytosis and severely impaired bactericidal activity (Figure 5.1C). 
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Figure 5.1 Myeloid cell function in LAR mice.   
FC male mice shown in blue, LAR male mice in red.  (A) Thioglycollate elicited macrophage mRNA expression 
after 24 hours incubation with 100ng/ml LPS, (n=5/group).  (B) Phagocytosis of labelled bacteria in whole 
blood, (n=10-11/group). (C) Intracellular GAS bacteria isolated after incubation with whole blood. Results 
shown is the average of a total of 15 replicates per group performed with whole blood from 3xFC and 3xLAR 
male mice over two experiments. *=<0.05. Average -/+ SEM is shown. Colony-forming unit (CFU).  
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5.3 The role of myeloid cell ARNT in models of inflammation and 

immune function. 

 

We next assessed the in vivo function of LAR myeloid cells. Cutaneous inflammatory response was 

reduced in LAR animals following SDS treatment.  As expected, skin in FC animals was irritated after 

SDS treatment, showing erythema and keratosis, and these gross findings were markedly reduced in 

LAR animals (Figure 5.2A). Inflammatory response in FC animals was marked by vasodilation, 

epidermal hyper-proliferation and oedema (Figure 5.2B).  Inflammatory response was scored by two 

independent observers blinded to genotype using a semi-quantitative scale of inflammation which 

included signs of infiltrate, edema and epidermal proliferation. Sections were scored from 0-4 with 0 

being no skin inflammation and 4 being maximal inflammation observed. Results are shown 

graphically (Figure 5.2C). 
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Figure 5.2 The SDS skin irritation model.    
(A) Photograph of male FC mice treated with SDS (upper panel) and male LAR mice treated with SDS (lower 
panel). (B) H&E of male FC and LAR skin after SDS study. (C) Histology after SDS was scored for signs of 
inflammation by two observes blinded to genotypy. Results in male mice expressed as the average % of mice 
with inflammation score FC (blue) LAR het (purple) and LAR (red). (n=5-6/group). 

 

The response of LAR mice to infection was then assessed by a model of GAS subcutaneous infection. 

LAR had significantly accelerated wound formation and size and increased bacteraemia following 

subcutaneous Group A streptococcal (GAS) injection (Figure 5.3).  There was no significant difference 

in weight loss between groups by repeated measures ANOVA, although LAR mice had a trend 

towards less weight loss at day 1 (p=0.055, by students ttest) and a trend to reduced overall weight 

at day 4 (p=0.1, by students ttest, Figure 5.3A).  At day 1 there was a significant increase in wound 

size in LAR animals compared to FC (p<0.001,by students ttest, Figure 5.3B).  Within the wound and 

spleen there was no significant difference in GAS CFU (colony forming units) in LAR mice (Figure 

5.3C). However, there was a significant increase in CFU isolated from LAR blood compared to FC 
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animals by Wald-Wolfowitz test (p<1x10
-10, Figure 5.3E). This indicated that LAR mice had increased 

systemic infection and were unable to keep the infection localised. 

 

 

 

 

 

Figure 5.3 Response of LAR mice to GAS infection.  
FC in blue (circles or bars) LAR mice in red (circles or bars). (A) Mouse weights after infection. (B) GAS wound 
size. (C) CFU isolated from skin. (D) CFU from spleen (E) CFU from blood. *p<0.05 by students ttest, #<0.05 by 
Wald-Wolfowitz test. SEM is shown (n=20-22/group). 
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The response of LAR mice to the skin transplant model was next assessed. There was a significant 

delay in Balb/c skin transplant rejection in LAR mice compared to FC by Log-rank (Mantel-Cox, 

p=0.0056, Figure 5.4A). There was no difference in rejection in the reciprocal transplant of LAR skin 

onto Balb/c mice, suggesting grossly normal presentation of antigens in LAR skin (Figure 5.4B).  

Interestingly, during these experiments it was noted that LAR mice appeared to have delayed healing 

after transplant rejection.  

 

 

Figure 5.4 Survival curve of graft rejection.  
Survival curve of Balbc graft onto FC recipient (black) and LAR recipient female mice (red) (A). Survival curve of 
reciprocal transplant from LAR donor (Red) or FC donor onto Balbc female mice. *p<0.05 by Mantel-Cox test 
(n=13-16/group). 
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5.4 LAR mice have delayed wound healing    

Given the observed healing delay after transplant rejection in LAR animals we formally assessed 

wound healing in these mice (Figure 5.5A). LAR mice had significantly delayed wound healing at 2, 4 

and 6 days by Students t-test (p<0.001, <0.001 and =0.011). Average tensile strength of LAR wounds, 

asessed with the assistance of Philip Boughton, was not significantly altered at day 18 by students 

ttest (Figure 5.5B). H&E and Trichrome Milligan’s staining of wounds, Peformed by James Bonner, at 

day 4 is shown (Figure 5.6 A-F). The results show no major morphometric changes observed in LAR 

mice wound histology compared to FC animals. 

 

 

 

Figure 5.5 Wound healing in female LAR mice.   
(A) Wound healing in FC (blue circles) and LAR (red squares), n=20/group. (B) Tensile strength of FC (blue 
circles) and LAR (red squares) of wounds at day 18 (n=6/group).  Average +/- SEM is shown, * < 0.05 by 
students ttest.  

 

Wounds were collected during the healing process (day 4) to examine gene expression. Cytokine 

expression in LAR animals was reduced with Mcp-1 mRNA expression reduced to 32% (p<0.0001, 

students ttest) and Il-6 mRNA to 14% (p=0.02, students ttest) of FC levels.  Tnf-α was also reduced to 

39% (not-normally distributed, Wald-Wolfowitz test p=0.003, Figure 5.7A).  Messenger RNA 

expression of the key tissue remodelling gene, Mmp9, was reduced to 44% of FC level (p=0.004, 

students ttest) and there was a trend to reduced Timp1 (47%, p=0.058, students ttest) and Sma (66%, 

p=0.064, students ttest).  Tgf-β1 was found to be reduced by Wald-Wolfowitz test as were Col1a1, 

Sma, Timp1 and Elastin (Figure 5.7B).  Interestingly although there was a reduction in cytokine and 

tissue remodelling gene expression, there was no significant change in macrophage marker F4/80 
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mRNA expression (Figure 5.7C). Together with unchanged numbers of thioglycollate-elicited 

macrophages, this indicated normal tissue migration in LAR macrophages. 

 

 

 

Figure 5.6 Wound histology. FC and LAR wounds at 4 days.  
Representative H&E of (FC) (C) and LAR wound (D) at 40 X magnification.  Trichrome milligan's stain of FC (E) 
and LAR wounds at 25 X magnification (F). Trichrome milligan's stain of FC (G) and LAR wounds (H) at 100 x 
Magnification at wound edge. 
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Figure 5.7 Day 4 wound mRNA expression.  
(A) Cytokine expression in day 4 wounds. (B) Tissue remodelling expression in day four wounds.  (C) F480 mRNA 
expression in day 4 wound. * = p<0.05 by students ttest. # = p<0.05 by Wald-Wolfowitz T test. SEM is shown, 
n=6/group.   
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of diabetic FC and LAR mice to DFO treatment (Figure 5.8B and C).  DFO treatment resulted in 

significant decreases in wound size of FC animals at 6 and 8 days (p=0.045 and p=0.03 by students 

ttest).  In contrast, DFO treatment failed to significantly improve wound healing in LAR animals. This 

indicated that action of ARNT+HIF in myeloid cells in wounds is required for the full benefit of DFO 

 

 
Figure 5.8 Wound healing in diabetic mice.  
(A) FC (blue circles) and LAR (red squares) wound healing in diabetic mice (n=12-20/group). (B and C) FC and 
LAR wound healing with (green circles or squares) or without DFO (n=8-10/group). * = p<0.05 by students ttest. 
Average -/+ SEM is shown.   
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5.5 Human monocyte ARNT expression in diabetes  

To test whether human myeloid cells from people with diabetes had lower ARNT, we measured 

ARNT mRNA in human blood monocytes. The monocyte cDNA and serum cytokine data were the 

kind gift of Sue Mclennon and Stephen Twigg (Department of Endocrinology, Royal Prince Alfred 

Hospital, Sydney, NSW, Australia).  There was very wide inter-individual variability, and no significant 

differences in monocyte mRNA expression of ARNT observed between control and diabetic patients 

(p= 0.3 by students ttest, Figure 5.9A).   

 

Interestingly, ARNT mRNA expression in human monocytes correlated negatively with serum levels of 

various cytokines. That is decreased ARNT expression in blood monocytes correlated with increased 

cytokine expression (Figure 5.9B - H) including IL-6 (p=0.01), IL-8 (p=0.02), MCP-1 (p=0.03) and TNF-α 

(p= 0.043, all by Pearson’s correlations p-value from 2-tailed analysis is shown).  There were no 

significant correlations between ARNT expression and IL-8, IFN-γ, IP-10 or MIP-1β. 
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Figure 5.9 Human monocyte ARNT mRNA and expression.  
ARNT level is expressed as the estimated relative fold change using the formula ARNT = 2*(40-CT). (A) ARNT 
mRNA expression in control (blue column, n=9) and diabetic (red column, n=25) patients. Average +/- SEM is 
shown. (B) IL- 6 pg/ml versus ARNT (C) IL- 8 pg/ml versus ARNT. (D) IFN-γ pg/ml versus ARNT. (E) IP-10 pg/ml 
versus ARNT. (F) MCP-1 pg/ml versus ARNT. (G) MIP-1β versus ARNT (H) TNF-α pg/ml versus ARNT. Pearson’s 
correlations were calculated using PRISM 5 software, (n=34 patients). * = p <0.05.   
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5.6 Discussion 

 

In this study, mice lacking ARNT in cells of the myeloid lineage displayed impairment of cytokine 

induction, phagocytosis, bacterial killing, skin inflammation, skin transplant rejection and wound 

healing.  Interestingly impairment of LAR wound healing relative to FC mice was markedly reduced in 

diabetic mice. This suggested that reduced ARNT transcriptional activity in myeloid cells is a 

component of the diabetic wound phenotype. DFO administration failed to significantly increase 

wound healing in LAR mice, also suggesting that increasing ARNT/HIF1α in myeloid cells is integral to 

the mode of action of DFO in improving diabetic wound healing (380, 381).  Interestingly ARNT mRNA 

in human blood monocytes correlated negatively with basal serum IL-6, IL-8, MCP-1 and TNF-α, 

which is consistent with increased cytokine mRNA observed basally in isolated macrophages. This 

also suggests that decreased ARNT in monocytes may paradoxically be linked to a chronic low-grade 

inflammation. 

 

The impairment of phagocytosis and bacterial killing found in these animals is consistent with 

previous literature on myeloid cell HIF-1α knockout animals (238, 266, 267). In those experiments 

phagocytosis was increased in macrophages exposed to hypoxia in a HIF-1α dependant manner 

(268). Decreased bactericidal activity may also relate to decreased activity of proteases neutrophil 

elastase and cathepsin G, decreased cathelicidin-related antimicrobial peptide and decreased nitric 

oxide production (266).  Interestingly impaired phagocytosis, bacterial killing and acute cytokine 

induction are all features of innate immune dysfunction in T2D (331).  

 

Isolated macrophages also showed decreased mRNA expression of cytokines Cxcl1, Mcp-1, Tgf-β1 

and Il-6.  Within wound biopsies, significantly reduced Mcp-1, Il-6 and Tnf-α mRNA expression was 

found, suggesting an impaired acute inflammatory response in vivo.   In addition IL-6 increases 

keratinocyte proliferation and migration, correspondingly mice lacking IL-6 have delayed wound 

healing (416).  MCP-1 plays a role in wound healing with knockout animals displaying delayed wound 

re-epithelialisation, angiogenesis and collagen synthesis (417).  Reduction of these cytokines coupled 

with impaired phagocytosis of bacteria and cellular debris may have contributed to the early delay in 

wound healing in this model. In support of the importance of monocytes, impaired monocyte 

phagocytosis and removal of inflammatory neutrophils has been shown to be a component of 

impaired wound healing in db/db diabetic mice (317). Reduction in the mRNAs for Col1a1, Mmp9 

and Timp1 were found compared to FC animals and suggest impaired collagen deposition and altered 

wound remodelling. These results show that ARNT regulates myeloid cell function. Reduced ARNT 
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results in impairment of acute inflammatory response in vitro and in vivo models.  It is now well 

accepted that HIF-1α expression is reduced in diabetic wounds and this reduction contributes to 

delayed wound healing (380-384).  Importantly, delivery of agents and vectors to increase HIF-1α 

wounds are not cell specific.  The results of this study suggest that increasing myeloid cell ARNT/HIF-

1α in diabetic wounds may be a component to the improvements in would healing observed in the 

published literature.  It is also important to note that LAR mice wound healing also deteriorated 

significantly on a diabetic background.  A component of this deterioration could be decreased 

ARNT/HIF activity in myeloid cells with residual ARNT expression. However, it is likely that the 

observed impairment of wound healing is due to additional alterations in wound healing which occur 

in the diabetic mileu in addition to reduced ARNT/HIF function in other cell types including 

fibroblasts (324, 381).   

 

 

Expression of ARNT in human monocytes was found to be highly variable, and larger studies may be 

required to determine if monocyte ARNT is in fact decreased in the setting of diabetes.  In addition, 

measurement of monocyte ARNT with patients with sepsis and impaired wound healing would be 

interesting, as would assessment of ARNT levels in tissue macrophages exposed to the diabetic 

milieu.    

 

The effect of DFO treatment on diabetic control mice wound healing in this study were not as 

marked as previous studies (381). Part of this may be the altered regime and decreased dosing of 

DFO compared to previous studies. Nonetheless DFO significantly decrease wound size in FC animals 

but not in mice lacking myeloid ARNT, suggesting a role for myeloid cell HIF-1α in mediating the 

effects of DFO. 

 

The correlation of reduced monocyte ARNT with increased serum cytokines IL-6, IL-8, MCP-1 and 

TNF-α was a surprising finding.  However results presented in section 4.4 show that mice lacking 

ARNT in myeloid cells have increased NASH and expression of Mcp-1, Tgfβ1 and Tnf-α  when placed 

on HFD.  Also there have been recent reports which indicate myeloid cell ARNT/HIF-1α may be anti-

inflammatory in certain situations.  For example mice lacking HIF-1α in myeloid cells were reported 

to have had increased allergic response in both a house dust mite model and an OVA murine asthma 

model (418). This study went on to suggest that myeloid cell HIF-1α is also responsible for dampening 

down inflammation through the expression of cytokines like IL-10.  It was also reported that HIF 

activation through myeloid cell Vhl deletion reduced inflammation in a model of chronic kidney 
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disease (419).  Finally it was shown that macrophage HIF-1α deletion led to an increased immune 

response to cancer through de-repression of infiltrating cytotoxic T-cell activity (420).  It may also be 

the case that the inflammatory environment produced by increased cytokine production results in 

decreased ARNT through ROS generation (421). 

 

The results of these studies show that mice lacking ARNT in cells of the myeloid lineage had impaired 

cytokine induction, phagocytosis, bacterial killing, skin inflammation, skin transplant rejection and 

wound healing.  The data presented here suggest that reduced ARNT activity in myeloid cells is a 

component of the diabetic phenotype and is consistent with the demonstrated impairment of 

immune function in these animals.   
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Chapter 6. Discussion and conclusions 
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6.1 Introduction 

The results of the numerous studies reviewed in Section 1.7 support a role for ARNT and its partners 

in liver function. This work aimed to investigate the impact of long term ARNT deletion on whole 

body metabolism, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steato-hepatitis (NASH) 

and liver fibrosis.   Liver dysfunction is a key component of T2D and the metabolic syndrome and is 

both affected by and actively contributes to these phenotypes (147, 148).  It is thought that it is 

primarily the elevated circulating lipids released from fat-laden adipocytes which leads to the 

increased prevalence of NAFLD and hence its sequelae NASH and cirrhosis (7).  This liver lipid 

accumulation is further exacerbated by liver insulin resistance which leads to a paradoxical increase 

in de novo lipogenesis (7).  The increased lipid content of the diabetic liver also spills over into the 

blood stream via increased export which contributes to the increased prevalence of cardiovascular 

disease in this population (48, 157, 158).  In addition insulin resistance in the liver contributes to 

elevated fasting glucose by increased hepatic glucose production (HGP), another key feature of T2D 

(153, 154).  A further feature of the diabetic liver is that hepatic glucose uptake is decreased and it is 

thought this may contribute to elevated blood glucose (152).  Decreased uptake in the liver may 

account for 1/3 of the decrease in glucose disappearance in people with type 2 diabetes (155, 156).  

Perturbations of HIF-1α and other members of the bHLH/PAS protein family have been 

demonstrated to play a role in all of these processes in animal models.  

 

The results of this work support a role for hepatic ARNT in HGP, glucose tolerance, post prandial lipid 

handling and ATP generation.  Importantly, these changes became non-significant after HFD. 

Although there was no significant reduction in ARNT protein in animals after HFD, it is well known in 

other tissues that HIF-1α activity is reduced at high glucose concentrations (380-383). This coupled 

with the finding that ARNT mRNA is reduced in human livers (252) may suggest modulation of this 

pathway in the diabetic milieu. 

 

The results of studies using HIF-1α knockout in myeloid cells suggested that perturbations in ARNT 

would affect immune function (238, 266, 267).  This information combined with studies showing that 

ARNT mRNA was decreased in the liver and islets of patients with type two diabetes led us to 

hypothesise that myeloid cell ARNT may also be decreased and play a role in the diabetic phenotype 

(225, 252). We used myeloid cell specific deletion of ARNT to investigate the role of this transcription 

factor in normal immune function, metabolism during HFD and wound healing in a non-diabetic and 

diabetic milieu. The results of work with these animals showed that ARNT deletion, like that of HIF-

1α, impaired myeloid cell function including decreased cytokine expression, decreased phagocytosis, 
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decreased bactericidal activity and impaired response to infection. These studies show for the first 

time that myeloid cell ARNT is important for normal wound healing.  Further, the difference in 

wound healing between knockout and FC animals equilibrated in a diabetic milieu. DFO, which 

increases HIFs was more effective in improving wound healing in FC diabetic mice. All this 

information suggests that myeloid cell ARNT/ HIF-1α function is crucial for the full effects of DFO in 

improving wound healing.  Interestingly, mice lacking ARNT in myeloid cells displayed impaired 

glucose tolerance on HFD and paradoxically increased liver inflammation.  In human cells, ARNT 

mRNA correlated negatively with key serum cytokine levels including IL-6, IL-8, MCP-1 and TNF-α, 

although there was no significant reduction in monocyte ARNT in diabetic patients compared to 

controls.   

 

6.2 ARNT and its partners in liver metabolism 

Hepatocyte ARNT binds with its partners HIF-1α, HIF-2α or AhR.   HIF-2α like HIF-1α is primarily 

regulated by cellular oxygen content (232). However as mentioned, it has been shown that HIF-1α 

can be stabilized by inflammation, TGF, IL-1β, PDGF and EGF (238, 239, 422).  Maximal HIF-1α 

expression is dependent on functional NF-κB in fibroblasts and macrophages.  Further, NF-κB 

signaling controls HIF-1α mRNA expression under both hypoxic and basal conditions (241). While the 

most relevant endogenous ligand for AhR is still contentious, there are many that have been found 

including bile acids, cAMP, curcumin, modified LDL and breakdown products from cruciferous 

vegetables (229-231, 423-425). The three ARNT-partners combined with ARNT regulate genes 

involved in hypoxic-responses, cell survival, proliferation, glycolysis, angiogenesis and response to 

xenobiotics (225-228).  Importantly, alterations in the activation status of either partner could 

potentially decrease the availability of ARNT for another. A further complicating factor when 

considering the role of ARNT is the existence of the highly homologous ARNT-2. ARNT-2 can bind 

with AhR, HIF1-A or HIF2-A and is required for maximal expression of hypoxia inducible genes in 

neuronal cells (426-428). This suggests that ARNT-2 may be able to partially compensate the effects 

of ARNT deletion. However, after development ARNT-2 appears to be expressed at negiligable levels 

in the liver (429-432) . Although considered in the past as being constitutively expressed it is known 

that ARNT protein is decreased in livers of mice with streptozotocin induced diabetes and that mRNA 

is decreased in diabetic patients (252). Studies have shown that ARNT is increased by insulin and 

decreased by circumin (252, 421). Furthermore, it is reduced alongside AhR in co-cultures of Kupffer 

cells and hepatocytes after LPS treatment (433). We found that ARNT mRNA was reduced in mice on 

a HFD, but surprisingly there was no significant alteration in ARNT protein expression between fasted 

chow and HFD mice.  The question of what actually occurs to ARNT’s partners and functionality in 
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diabetic human liver remains unknown.  It has however been reported that HIF-1α expression was 

transiently increased in the mouse livers after high fat/sucrose diet, and expression is also increased 

in the bile duct ligation model of liver fibrosis and in ethanol induced fatty liver (259, 400, 434). To 

add to the likelihood that HIF-1α activity is altered in the setting of diabetes evidence suggests that 

HIF-1α activity may be reduced at high glucose concentrations (380-383).  Future studies assessing 

protein levels and function of liver AhR, HIF-2α and HIF-1α in models of diabetes would help to 

ascertain whether or not signalling through these transcription factors are in fact altered. 

 

 

From the literature it could be predicted that ARNT deletion would result in a phenotypic copy of a 

combination of the effects of deletion of ARNT’s partners.  AhR deletion has been shown to increase 

liver fibrosis, increase insulin sensitivity and decrease gluconeogenic gene expression (244, 245, 250). 

While deletion or activation of AhR has been shown to increase hepatic lipid accumulation (244, 248, 

249).  It would appear that a lack of signalling through HIF-2α should lead to decreased fibrosis and 

triglyceride accumulation, which could negate some of the effects of loss of AhR function (257, 258).  

The results of studies using hepatocyte Vhl deletion suggest that excess HIF-1α inhibits 

gluconeogenesis (256).  However, the interpretation of studies involving Vhl deletion is complicated 

by the finding that HIF proteins are also hydroxylated at asparagine residues by factor inhibiting HIF 

(FIH) to prevent interactions with co-activators (236).   The effects of hepatocyte HIF-1α deletion 

have varied in different studies, with some producing contradicting results in similar models. In 

particular HIF-1α deletion has been shown to be protective in terms of fibrosis in a bile duct ligation 

model of fibrosis, while generating conflicting results in a model of ethanol-induced fatty liver (259, 

400, 434).  A further study showed impairment of glucose tolerance and hepatocyte glucose uptake 

after HIF-1α deletion on HFD (265). The results of the experiments of this thesis show findings most 

consistent with a phenotype of a combination of altered HIF-1α and HIF-2α function.  Although there 

was no change in histological fibrosis scores between LARNT and FC mice after the TAA model of liver 

fibrosis, the quantity of collagen was decreased in LARNT mice. This is consistent with decreased 

signalling through HIFs. However, it also shows that HIF activity is not an absolute requirement for 

fibrosis initiation. Taken together, this work along with that of other groups suggest that 

physiological levels and function of liver ARNT and its partners are desirable in the diabetic 

environment. A reduction in signalling through ARNT would not contribute to the lipid accumulation 

observed in NAFLD or NASH but it may contribute to elevated fasting glucose and impaired glucose 

tolerance, through decreased liver glucose uptake and elevated HGP.   
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6.3 Myeloid cell ARNT and its partners in innate immune function, 

metabolism and wound healing. 

 

Since the importance of HIF-1α in myeloid cells was discovered by Cramer et al 2003, increased HIF-

1α has been demonstrated in a number of disorders characterised by a proinflammatory state 

including inflammatory bowel disease, asthma, psoriasis, atherosclerosis, and rheumatoid arthritis 

(435-438).  It has become clear that myeloid cell HIF-1α both effects and is affected by inflammation, 

with molecules like TNF-α, IL-1β and LPS increasing HIF-1α mRNA and protein (439-441).  An 

additional link between myeloid cell HIF and immunity is that NF-κB was been found to be crucial for 

maximal HIF-1α mRNA expression, while HIF-1α may also increase levels of NF-κB (241). It has also 

been shown that ARNT deletion in Kupffer cells prevented the upregulation of PDGF-β, VEGF, 

angiopoetin-1 and MCP-1 in hypoxia (269).  The results of this research have indicated a decreased 

acute response of myeloid cells lacking ARNT in terms of phagocytosis, bacterial killing and cytokine 

expression. A complicating factor in this work is the low level of ARNT deletion found in macrophages 

and the non-myeloid-cell expression found in previous studies (411-413).  Nonetheless we have 

found a phenotype both in vitro and in vivo.  This data is consistent with the phenotype of myeloid 

cells lacking HIF-1α, suggesting that loss of HIF-1α signalling is a major cause of these effects (238, 

266, 267).  ARNT deletion led to defects in terms of increased infection, decreased inflammation and 

delayed wound healing.  Paradoxically, this decreased immune response to infection was 

accompanied by increased liver inflammation and histological fibrosis score after HFD.  The 

mechanisms of this finding were not investigated during this study, however it has recently been 

reported that in mice lacking ARNT/ HIF-1α signalling in myeloid cells have increased allergic 

response in both a house dust mite model and an OVA murine asthma model (418). This study goes 

on to suggest that myeloid cell HIF-1α is also responsible for dampening down inflammation through 

the expression of cytokines like IL-10.  It was also reported that HIF activation through myeloid cell 

Vhl deletion reduced inflammation in a model of chronic kidney disease, and that macrophage HIF-

1α deletion increased the immune response to cancer through de-repression of infiltrating cytotoxic 

T-cell activity (419, 420). Thus depending on the tissue and the nature of the stimulus HIF signalling 

through ARNT can be pro or anti-inflammatory. The importance of ARNT/HIF-1α signalling for 

macrophage phagocytosis has now been shown in a number of studies, and this suggests that it may 
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also be important for resolution of inflammation through phagocytosis of apoptotic neutrophils (238, 

268, 442).  

 

It is noteworthy that AhR has also been shown to be important for proper immune response to 

listeria infections (443). In addition it has been shown that LPS treatment of co-cultures of Kupffer 

cells and hepatocytes lead to a decrease in ARNT and AhR protein. This did not occur with 

monocultures of either cell type or when a membrane stopped direct cell to cell interaction. The 

effect was blocked by addition of anti-TNF-α and anti-IL-1β antibodies (433). Furthermore, the aryl 

hydrocarbon receptor has been shown to play a role in immune function, both in T cell and 

macrophage function (424, 444). In the second case it was shown that AhR knockout animals are 

sensitive to LPS induced septic shock and that this may be caused by elevated IL-1β production by 

macrophages. Intriguingly it appears that this effect was independent of ARNT indicating that AhR 

can also induce changes in gene expression independent of ARNT through an as yet undetermined 

mechanism (444). This model was not investigated in this research but further complicates the 

picture of signalling by ARNT and its partners. A further potentially complicating factor is again 

compensation by ARNT2, although expression in myeloid cells has not previously been reported (429, 

431).   

 

During the investigation of monocyte ARNT mRNA expression in diabetes we found a significant 

negative correlation ARNT and cytokine expression of IL-6, IL-8, MCP-1 and TNF-α.  Cytokine 

expression is known to effect HIF-1α expression, and at this point a cause and effect relationship is 

speculative. However, in the context of our finding of increased inflammation and cytokine mRNA 

expression in LAR livers after HFD it is possible that the increase in inflammatory cytokines in these 

patients may be a result of chronically decreased ARNT expression in myeloid cells.    

 

Another important finding of our research is that myeloid cell ARNT deletion generally impaired 

glucose tolerance on HFD. This is consistent with an important role for myeloid cells in metabolism 

metabolism (182-186).  Surprisingly, although we found increased weight gain in female mice initially 

we did not find increased insulin resistance to explain the altered glucose tolerance in either sex. One 

possibility that was not investigated is that the tissue inflammation evidenced in these animals on 

HFD led to inflammation of pancreatic tissue and a decrease in insulin secretion by islets.  This 

hypothesis requires further examination. 
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It is widely accepted that rapidly expanding adipose tissue in obesity becomes hypoxic as tissue 

growth occurs faster than the vasculature can keep pace with (270-273).  In addition oxygen tension 

correlates negatively with macrophage infiltration suggesting hypoxia may be responsible for the 

inflammation observed (270).  Correspondingly levels of HIF-1α are also known to increase (274, 445) 

and the effects of HIF-1α on adipose function have been explored in a number of studies.  One study 

used the AP2 promoter to overexpress a constitutively active HIF-1α, and showed that these animals 

had increased adipose tissue inflammation and fibrosis alongside decreased glucose tolerance and 

increased weight gain on HFD (274).  Complementary to this work it was shown that AP2-mediated 

HIF-1α or ARNT deletion resulted in reduced adipose tissue and improved glucose tolerance (275, 

276). However Lee et al 2011 did not find reduced fat inflammation and fibrosis with adipocyte ARNT 

deletion suggesting it is not a requirement for these features (276). Again using the AP2 promoter 

Zhang et al (2010) showed that overexpression of a dominant negative form of HIF-1α led to 

increased obesity and impaired glucose tolerance on HFD (446).  Work with a tamoxifen inducible 

AP2 HIF-1α knockout recapitulated findings of decreased adipose tissue, with improved glucose 

tolerance and insulin sensitivity.  In addition these animals had increased beta oxidation in visceral 

adipose tissue (277).  This work suggests that either too much or too little signalling through HIF-1α 

in adipose tissue is detrimental. Importantly the commonly used AP2 promoter, which was utilised to 

drive specific adipocyte expression, has also been found to be expressed in macrophages and other 

cells (278, 279). This suggests that some effects of these studies may be mediated through alteration 

of macrophage function.  Repeating the aforementioned studies using the adipocyte specific 

promoter developed by Wang et al 2010 would be helpful to clarify the specific role of adipocyte HIF-

1α and ARNT (447).  

 

One unique finding of this research is that loss of myeloid ARNT led to delayed wound healing, and 

that the delay was markedly reduced on a diabetic background. This is consistent with signalling 

through the ARNT/ HIF-1α dimer and the reported decrease in HIF-1α activity in diabetic wounds 

(381, 383).  Thus the beneficial effects of iron chelation seem to require myeloid cell ARNT for the full 

effects.  As discussed this is likely to be the result of decreased cytokine expression and altered 

innate immune cell function.  These defects may also be the result of delayed resolution of 

inflammation and subsequent elongation of healing time. Assessment of cytokine expression and 

inflammatory cell infiltration and clearance at multiple time points would be useful to determine if in 

fact non-resolving inflammation is a component of this phenotype.  
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6.4 The potential of ARNT in therapy.  

Although ARNT was previously considered to be constitutively expressed, it has now been shown to 

be regulated in specific circumstances.  ARNT protein has been reported to be down-regulated by 

ROS, possibly through miR-24 (448). As mentioned in the above section LPS treatment of co cultures 

of KCs and hepatocytes can lead to a decrease in both ARNT and AhR mRNA and protein (433). It has 

also been found that curcumin leads to destabilisation and reduction in ARNT protein (421). Coupled 

with this is the finding that ARNT mRNA is lower in livers and islets of diabetic patients, and that 

protein is decreased in the livers of mice with streptozocin induced diabetes (225, 252).  These 

findings suggest that ARNT mRNA and protein are in fact regulated and that in the future drugs could 

be designed to specifically target this transcription factor. 

 

The HIFα’s have been modulated by iron chelators such as DFO and DFS, and by heavy metals such as 

CoCL2 in animal models to increase HIF-1α (251, 381, 449).  Specific PHD inhibition has also been 

used in animal models, apparently without untoward effects (450, 451).  The idea of increasing HIF-

1α in therapy is controversial due to mixed results seen with HIF-1α perturbations in different 

models and different tissues. In particular upregulation of the HIFα’s via deletion of Vhl has been 

shown to be lead to impaired pancreatic function, and liver steatosis with inflammation (256, 452).  

In the case of the liver, it led to death if left uncountered.  So certainly the supra-physiological level 

of HIFα’s delivered with complete loss of Vhl function have negative consequences. Nonetheless 

modulation of HIF-1α using DFO was shown to improve islet survival and glucose tolerance on a HFD 

(251, 449). In other systems results have also varied depending on the model and the nature of HIF-

1α modulation.  For example, there is evidence that HIF-1α plays a role in proximal tubular epithelial 

cells to increase renal fibrosis and renal dysfunction in the unilateral ureteral obstruction model of 

chronic kidney disease (453). In contrast, global induction of HIFα’s using cobalt infusion or prolyl 

hydroxylase inhibition with L-mimosine was found to be protective in a model of gentamycin induced 

kidney injury and subtotal nephrectomy respectively (450, 454).  Not surprisingly in the lung the 

upregulation of MCP-1 in response to a model of allergic airway disease was reported to be 

dependent on HIF-1α, and global disruption of ARNT or HIF-1α signalling reduced inflammation(455, 

456). In contrast to this HIF-1α deletion specifically in myeloid cells enhanced sensitivity to 

inflammation (418). A recent a paper showed that HIF-1α deletion in T cells led to increased colonic 

inflammation with a failure of hypoxia to induce Treg activation and coincident increased in TH17 

cells (457). Suggesting that in T cells HIF-1α may be anti-inflammatory.  In addition increasing colonic 

HIFs through dimethyloxalylglycine, prolyl hydroxylase (PHD) inhibitor (FG-4497) was shown to 

reduce inflammation. Further work showed that epithelial deletion of HIF-1α led to increased 
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inflammation and colonic damage with TNBS or oxazolone induced colitis (451, 458, 459).  

Nonetheless increasing HIF’s with Vhl deletion or an activating mutation also led to increased colitis 

using the DSS model (460), as did whole body deletion of PHD3 (461).  Thus the potential use of the 

use of HIFα modulation in disease management could be complicated by differing effects in different 

tissues and in different disease processes.  

 

One example of increased human HIF-1α function is Vhl syndrome, which is an autosomal dominant 

disease characterised by the inheritance of one dysfunctional copy of VhL and predisposition to the 

development of various tumours through somatic mutation of the second functional copy including: 

haemangioblastomas, renal cysts, phaeochromocytoma and renal cell carcinoma (462). Although 

only one copy is mutated in this instant I was unable to find any articles suggesting a tumour-

independent increase in prevalence of metabolic derangements, fatty liver, inflammation or fibrosis.  

Another point to make is that iron chelation with DFO and DFS, which leads to an increase in HIFα 

expression, has long been used to treat the toxic accumulation of iron in patients that result from the 

need for frequent transfusions (thalassemia, sickle cell disease, and aplastic anaemia) and 

haemochromatosis. Available evidence suggests that long term use of desferasirox within the 

therapeutic range is safe, with the most common adverse effects being associated with 

gastrointestinal disturbances and a rash (463, 464).  Two studies looked at the use of iron chelation 

to treat diabetes. The first study showed that in those patients with diabetes and hyperferritinaemia 

of no known cause metabolic control was improved with iron chelation, however no effect was seen 

in diabetic patients with normal serum ferritin levels (465). The second found a small improvement in 

glycated haemoglobin in patients with hyperferritinaemia (466). However, I was unable to locate a 

paper which specifically assessed serum cytokine expression after DFO treatment (as a marker of 

possible increased inflammation).  

 

Importantly these studies did not exclude AhR as being responsible for some of the effects of ARNT 

deletion. And AhR modulation may also hold future promise, as mentioned potential ligands for 

development could include bile acids and breakdown products from cruciferous vegetables (229-

231).  AhR has multiple ligands some of which we are exposed to on a regular basis in the form of 

polycyclic aromatic hydrocarbons (424). It has in fact been postulated that the increasing prevalence 

of exogenous AhR ligands in the environment may be linked with increasing inflammatory and 

autoimmune disease (424).  
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6.5 Future studies 

As discussed multiple questions about the role of ARNT in liver and immune dysfunction remain.  The 

most pressing being what happens to ARNT function in diabetic patients? Currently it is known that 

ARNT mRNA is decreased in the liver and pancreas but protein levels have not been assessed (252). 

Future studies should address this.  The Arg554Lys polymorphism in AhR is described in the literature 

and predisposes to decreased levels of ARNT and AhR (407).  To date this polymorphism has been 

associated with risk of male infertility and DNA damage in lymphocytes (467, 468).  There have been 

mixed results in terms of risk of lung cancer and no association with endometriosis or breast cancer 

(469-472). To date there have been no studies investigating an association with obesity, T2D or 

innate immune function, it would be interesting to screen these populations to determine if this 

polymorphism is over-reperesented. This could suggest that intrinsically low ARNT could actually 

predispose individuals to the development of diabetes.  We found a reduction in ARNT mRNA after 

HFD in mice we did not find a corresponding reduction in total protein. An additional experiment to 

address this would be to assess nuclear versus cytoplasmic ARNT to see if levels of nuclear/active 

ARNT are in fact altered, this would suggest decreased transcriptional activity. Neverless if the 

findings of this work translate into humans then modulation of liver ARNT could be used 

therapeutically to reduce gluconeogenesis and post prandial liver lipids.  

 

In terms of the LARNT phenotype one unanswered question is the cause for increased serum lipids 

after feeding. Donnelley et al (2005) described a technique using multiple labeled substrates which 

could be used to delineate the liver uptake and lipogenesis, which we could use to investigate the 

phenotype (7).  This finding also raises the possibility that polymorphisms like the Arg554Lys, which 

lead to alterations in liver ARNT expression, could predispose to elevated serum TG and 

cardiovascular disease. It would be interesting to assay serum of LARNT mice to see the relative 

amounts of LDL and HDL, and see if the lipid profile is altered in an atherogenic direction.   

 

Assessment of ARNT in monocytes was hampered by the apparent variability of ARNT expression in 

control human monocyte humans.  Larger studies would clarify this issue as would measurement of 

ARNT protein levels.  The finding of a negative correlation between monocyte ARNT mRNA 

expression and key cytokine expression also raised the possibility that decreased ARNT could 

contribute to a low grade inflammation.   It would have been interesting to assess serum cytokine 

levels in HFD fed LAR mice to see if the increased liver inflammation observed correlated with a 

systemic inflammatory response.  Perfoming the TAA model on LAR animals would be another useful 

experiment to determine whether myeloid cell ARNT is involved in liver fibrosis.  The cause of the 
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impaired glucose tolerance in HFD LAR mice was also unclear. Although a level of insulin resistance 

was found in female animals we found no consistent increase in insulin resistance in males to explain 

the impaired glucose tolerance observed in these animals.  As mentioned in the text one possibility is 

pancreatic dysfunction caused by inflammation which could have led to decreased insulin secretion 

(201, 404). An easy way to assess this hypothesis would be to place male LAR animals on a short term 

HFD and assess glucose stimulated insulin secretion and pancreatic histology and mRNA expression.  

Another potential explanation could be altered hepatic function leading to alterations in 

gluconeogenesis. At 20 weeks we actually found decreased gluconeogenesis in males. However, at 

this time point male LAR mice no longer had impaired glucose tolerance compared to FC, and fasting 

glucose levels were lower. Assessment of gluconeogenesis at earlier timepoints would be useful and 

also ideally a labelled euglycemic– hyperinsulinaemic clamp to determine hepatic insulin resistance.  

In terms of the role of ARNT in wound healing it would be useful to assess monocyte ARNT 

specifically in diabetic and control patients with sepsis and impaired would healing.  Also as 

mentioned it would be interesting to assess wound histology and cytokine expression at multiple 

time points in LAR mice wounds to determine if non-resolving inflammation is a component of the 

wound healing phenotype of these animals.   

 

6.6 Summary 

This work investigated the role of ARNT in the function of the liver and of the immune system. We 

found that ARNT is crucial for normal functioning of both systems and that perturbation in these cell 

types lead to changes with much in common with those observed in T2D. Importantly, in both 

instances we found evidence for alteration of normal ARNT signalling in a diabetic milieu. It is also 

apparent that the effects of the ARNT deletion are likely the result of a combination of disruptions in 

signalling in its multiple partners.  Previous studies have shown that ARNT levels are altered in the 

liver and islets of people with diabetes, reduced in mouse models of T1D, and that the transcriptional 

activity of HIF-1α is reduced in the diabetic mileu. This accumulating evidence points to a potentially 

global down-regulation of ARNT function in the setting of diabetes. The results of this work in 

combination with previous studies also suggest that this reduced function of ARNT could be involved 

in multiple aspects of the diabetic phenotype in different tissues.   This data adds to the growing 

body of evidence that in the future modulation of ARNT and its partners could be used 

therapeutically for the management of diabetes and its complications, as well as potentially other 

causes of immune dysfunction.  
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