83 research outputs found

    Confirming TDP2 mutation in spinocerebellar ataxia autosomal recessive 23 (SCAR23)

    Get PDF
    Objective To address the relationship between mutations in the DNA strand break repair protein tyrosyl DNA phosphodiesterase 2 (TDP2) and spinocerebellar ataxia autosomal recessive 23 (SCAR23) and to characterize the cellular phenotype of primary fibroblasts from this disease. Methods We have used exome sequencing, Sanger sequencing, gene editing and cell biology, biochemistry,and subcellular mitochondrial analyses for this study. Results We have identified a patient in the United States with SCAR23 harboring the same homozygous TDP2 mutation as previously reported in 3 Irish siblings (c.425+1G>A). The current and Irish patients share the same disease haplotype, but the current patient lacks a homozygous variant present in the Irish siblings in the closely linked gene ZNF193, eliminating this as a contributor to the disease. The current patient also displays symptoms consistent with mitochondrial dysfunction, although levels of mitochondrial function in patient primary skin fibroblasts are normal. However, we demonstrate an inability in patient primary fibroblasts to rapidly repair topoisomerase-induced DNA double-strand breaks (DSBs) in the nucleus and profound hypersensitivity to this type of DNA damage. Conclusions These data confirm the TDP2 mutation as causative for SCAR23 and highlight the link between defects in nuclear DNA DSB repair, developmental delay, epilepsy, and ataxia

    Sex-specific aspects of phospholamban cardiomyopathy:The importance and prognostic value of low-voltage electrocardiograms

    Get PDF
    Background: A pathogenic variant in the gene encoding phospholamban (PLN), a protein that regulates calcium homeostasis of cardiomyocytes, causes PLN cardiomyopathy. It is characterized by a high arrhythmic burden and can progress to severe cardiomyopathy. Risk assessment guides implantable cardioverter-defibrillator therapy and benefits from personalization. Whether sex-specific differences in PLN cardiomyopathy exist is unknown. Objective: The purpose of this study was to improve the accuracy of PLN cardiomyopathy diagnosis and risk assessment by investigating sex-specific aspects. Methods: We analyzed a multicenter cohort of 933 patients (412 male, 521 female) with the PLN p.(Arg14del) pathogenic variant following up on a recently developed PLN risk model. Sex-specific differences in the incidence of risk model components were investigated: low-voltage electrocardiogram (ECG), premature ventricular contractions, negative T waves, and left ventricular ejection fraction. Results: Sustained ventricular arrhythmias (VAs) occurred in 77 males (18.7%) and 61 females (11.7%) (P =.004). Of the 933 cohort members, 287 (31%) had ≥1 low-voltage ECG during follow-up (180 females [63%], 107 males [37%]; P =.006). Female sex, age, age at clinical presentation, and proband status predicted low-voltage ECG during follow-up (area under the curve: 0.78). Sustained VA-free survival was lowest in males with low-voltage ECG (P <.001). Conclusion: Low-voltage ECGs predict sustained VA and are a component of the PLN risk model. Low-voltage ECGs are more common in females, yet prognostic value is greater in males. Future studies should determine the impact of this difference on the risk prediction of PLN cardiomyopathy and possibly other cardiomyopathies

    Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

    Get PDF
    Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome

    Mutations in CYB561 Causing a Novel Orthostatic Hypotension Syndrome

    Get PDF
    Rationale: Orthostatic hypotension is a common clinical problem, but the underlying mechanisms have not been fully delineated. Objective: We describe two families, with four patients in total, suffering from severe life-threatening orthostatic hypotension due to a novel cause. Methods and Results: As in dopamine β-hydroxylase deficiency (DβH), concentrations of norepinephrine and epinephrine in the patients were very low. Plasma DβH activity, however, was normal and the DBH gene had no mutations. Molecular genetic analysis was performed to determine the underlying genetic cause. Homozygosity mapping and exome and Sanger sequencing revealed pathogenic homozygous mutations in the gene encoding cytochrome b561 (CYB561); a missense variant c.262G>A, p.Gly88Arg in exon 3 in the Dutch family and a nonsense mutation (c.131G>A, p.Trp44*) in exon 2 in the American family. Expression of CYB561 was investigated using RNA from different human adult and fetal tissues, transcription of RNA into cDNA and real-time quantitative polymerase chain reaction. The CYB561 gene was found to be expressed in many human tissues, in particular the brain. The CYB561 protein defect leads to a shortage of ascorbate inside the catecholamine secretory vesicles leading to a functional DβH deficiency. The concentration of the catecholamines and downstream metabolites was measured in brain and adrenal tissue of six CYB561 knockout mice (reporter-tagged deletion allele (post-Cre), genetic background C57BL/6NTac). The concentration of norepinephrine and normetanephrine was decreased in whole brain homogenates of the CYB561(-/-) mice compared to wild type mice (p<0.01) and the concentration of normetanephrine and metanephrine was decreased in adrenal glands (p<0.01), recapitulating the clinical phenotype. The patients responded favorably to treatment with L-dihydroxyphenylserine, which can be converted directly to norepinephrine. Conclusions: This study is the first to implicate cytochrome b561 in disease by showing that pathogenic mutations in CYB561 cause an as yet unknown disease in neurotransmitter metabolism causing orthostatic hypotension. as yet unknown disease in neurotransmitter metabolism causing orthostatic hypotension

    ECG-only explainable deep learning algorithm predicts the risk for malignant ventricular arrhythmia in phospholamban cardiomyopathy

    Get PDF
    Background: Phospholamban (PLN) p.(Arg14del) variant carriers are at risk for development of malignant ventricular arrhythmia (MVA). Accurate risk stratification allows timely implantation of intracardiac defibrillators and is currently performed with a multimodality prediction model. Objective: This study aimed to investigate whether an explainable deep learning–based approach allows risk prediction with only electrocardiogram (ECG) data. Methods: A total of 679 PLN p.(Arg14del) carriers without MVA at baseline were identified. A deep learning–based variational auto-encoder, trained on 1.1 million ECGs, was used to convert the 12-lead baseline ECG into its FactorECG, a compressed version of the ECG that summarizes it into 32 explainable factors. Prediction models were developed by Cox regression. Results: The deep learning–based ECG-only approach was able to predict MVA with a C statistic of 0.79 (95% CI, 0.76–0.83), comparable to the current prediction model (C statistic, 0.83 [95% CI, 0.79–0.88]; P = .054) and outperforming a model based on conventional ECG parameters (low-voltage ECG and negative T waves; C statistic, 0.65 [95% CI, 0.58–0.73]; P &lt; .001). Clinical simulations showed that a 2-step approach, with ECG-only screening followed by a full workup, resulted in 60% less additional diagnostics while outperforming the multimodal prediction model in all patients. A visualization tool was created to provide interactive visualizations (https://pln.ecgx.ai). Conclusion: Our deep learning–based algorithm based on ECG data only accurately predicts the occurrence of MVA in PLN p.(Arg14del) carriers, enabling more efficient stratification of patients who need additional diagnostic testing and follow-up.</p

    Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction

    Get PDF
    AIMS: This study aims to improve risk stratification for primary prevention implantable cardioverter defibrillator (ICD) implantation by developing a new mutation-specific prediction model for malignant ventricular arrhythmia (VA) in phospholamban (PLN) p.Arg14del mutation carriers. The proposed model is compared to an existing PLN risk model. METHODS AND RESULTS: Data were collected from PLN p.Arg14del mutation carriers with no history of malignant VA at baseline, identified between 2009 and 2020. Malignant VA was defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. A prediction model was developed using Cox regression. The study cohort consisted of 679 PLN p.Arg14del mutation carriers, with a minority of index patients (17%) and male sex (43%), and a median age of 42 years [interquartile range (IQR) 27–55]. During a median follow-up of 4.3 years (IQR 1.7–7.4), 72 (10.6%) carriers experienced malignant VA. Significant predictors were left ventricular ejection fraction, premature ventricular contraction count/24 h, amount of negative T waves, and presence of low-voltage electrocardiogram. The multivariable model had an excellent discriminative ability {C-statistic 0.83 [95% confidence interval (CI) 0.78–0.88]}. Applying the existing PLN risk model to the complete cohort yielded a C-statistic of 0.68 (95% CI 0.61–0.75). CONCLUSION: This new mutation-specific prediction model for individual VA risk in PLN p.Arg14del mutation carriers is superior to the existing PLN risk model, suggesting that risk prediction using mutation-specific phenotypic features can improve accuracy compared to a more generic approach

    Long-term reliability of the phospholamban (PLN) p.(Arg14del) risk model in predicting major ventricular arrhythmia:a landmark study

    Get PDF
    Aims:Recently, a genetic variant-specific prediction model for phospholamban (PLN) p.(Arg14del)-positive individuals was developed to predict individual major ventricular arrhythmia (VA) risk to support decision-making for primary prevention implantable cardioverter defibrillator (ICD) implantation. This model predicts major VA risk from baseline data, but iterative evaluation of major VA risk may be warranted considering that the risk factors for major VA are progressive. Our aim is to evaluate the diagnostic performance of the PLN p.(Arg14del) risk model at 3-year follow-up. Methods:We performed a landmark analysis 3 years after presentation and selected only patients with no prior major VA. Data were and results collected of 268 PLN p.(Arg14del)-positive subjects, aged 43.5 ± 16.3 years, 38.9% male. After the 3 years landmark, subjects had a mean follow-up of 4.0 years (± 3.5 years) and 28 (10%) subjects experienced major VA with an annual event rate of 2.6% [95% confidence interval (CI) 1.6–3.6], defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. The PLN p.(Arg14del) risk score yielded good discrimination in the 3 years landmark cohort with a C-statistic of 0.83 (95% CI 0.79–0.87) and calibration slope of 0.97. Conclusion:The PLN p.(Arg14del) risk model has sustained good model performance up to 3 years follow-up in PLN p.(Arg14del)positive subjects with no history of major VA. It may therefore be used to support decision-making for primary prevention ICD implantation not merely at presentation but also up to at least 3 years of follow-up.</p

    Physiological-based cord clamping in very preterm infants:the Aeration, Breathing, Clamping 3 (ABC3) trial—statistical analysis plan for a multicenter randomized controlled trial

    Get PDF
    Background: Mortality, cerebral injury, and necrotizing enterocolitis (NEC) are common complications of very preterm birth. An important risk factor for these complications is hemodynamic instability. Pre-clinical studies suggest that the timing of umbilical cord clamping affects hemodynamic stability during transition. Standard care is time-based cord clamping (TBCC), with clamping irrespective of lung aeration. It is unknown whether delaying cord clamping until lung aeration and ventilation have been established (physiological-based cord clamping, PBCC) is more beneficial. This document describes the statistical analyses for the ABC3 trial, which aims to assess the efficacy and safety of PBCC, compared to TBCC. Methods: The ABC3 trial is a multicenter, randomized trial investigating PBCC (intervention) versus TBCC (control) in very preterm infants. The trial is ethically approved. Preterm infants born before 30 weeks of gestation are randomized after parental informed consent. The primary outcome is intact survival, defined as the composite of survival without major cerebral injury and/or NEC. Secondary short-term outcomes are co-morbidities and adverse events assessed during NICU admission, parental reported outcomes, and long-term neurodevelopmental outcomes assessed at a corrected age of 2 years. To test the hypothesis that PBCC increases intact survival, a logistic regression model will be estimated using generalized estimating equations (accounting for correlation between siblings and observations in the same center) with treatment and gestational age as predictors. This plan is written and submitted without knowledge of the data. Discussion: The findings of this trial will provide evidence for future clinical guidelines on optimal cord clamping management at birth. Trial registration: ClinicalTrials.gov NCT03808051. Registered on 17 January 2019.</p

    Long-term reliability of the phospholamban (PLN) p.(Arg14del) risk model in predicting major ventricular arrhythmia:a landmark study

    Get PDF
    Aims:Recently, a genetic variant-specific prediction model for phospholamban (PLN) p.(Arg14del)-positive individuals was developed to predict individual major ventricular arrhythmia (VA) risk to support decision-making for primary prevention implantable cardioverter defibrillator (ICD) implantation. This model predicts major VA risk from baseline data, but iterative evaluation of major VA risk may be warranted considering that the risk factors for major VA are progressive. Our aim is to evaluate the diagnostic performance of the PLN p.(Arg14del) risk model at 3-year follow-up. Methods:We performed a landmark analysis 3 years after presentation and selected only patients with no prior major VA. Data were and results collected of 268 PLN p.(Arg14del)-positive subjects, aged 43.5 ± 16.3 years, 38.9% male. After the 3 years landmark, subjects had a mean follow-up of 4.0 years (± 3.5 years) and 28 (10%) subjects experienced major VA with an annual event rate of 2.6% [95% confidence interval (CI) 1.6–3.6], defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. The PLN p.(Arg14del) risk score yielded good discrimination in the 3 years landmark cohort with a C-statistic of 0.83 (95% CI 0.79–0.87) and calibration slope of 0.97. Conclusion:The PLN p.(Arg14del) risk model has sustained good model performance up to 3 years follow-up in PLN p.(Arg14del)positive subjects with no history of major VA. It may therefore be used to support decision-making for primary prevention ICD implantation not merely at presentation but also up to at least 3 years of follow-up.</p

    Autosomal Recessive Dilated Cardiomyopathy due to DOLK Mutations Results from Abnormal Dystroglycan O-Mannosylation

    Get PDF
    Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM) are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5–13 years) with a predominant presentation of dilated cardiomyopathy (DCM). Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG). Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations
    • …
    corecore