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ABSTRACT
BACKGROUND Phospholamban (PLN) p.(Arg14del) variant carriers are at risk for development of malignant ventricular
arrhythmia (MVA). Accurate risk stratification allows timely implantation of intracardiac defibrillators and is currently performed
with a multimodality prediction model.

OBJECTIVE This study aimed to investigate whether an explainable deep learning–based approach allows risk prediction with
only electrocardiogram (ECG) data.

METHODS A total of 679 PLN p.(Arg14del) carriers without MVA at baseline were identified. A deep learning–based variational
auto-encoder, trained on 1.1 million ECGs, was used to convert the 12-lead baseline ECG into its FactorECG, a compressed
version of the ECG that summarizes it into 32 explainable factors. Prediction models were developed by Cox regression.

RESULTS The deep learning–based ECG-only approach was able to predict MVA with a C statistic of 0.79 (95% CI, 0.76–0.83),
comparable to the current predictionmodel (C statistic, 0.83 [95%CI, 0.79–0.88]; P5 .054) and outperforming amodel based on
conventional ECG parameters (low-voltage ECG and negative T waves; C statistic, 0.65 [95% CI, 0.58–0.73]; P < .001). Clinical
simulations showed that a 2-step approach, with ECG-only screening followed by a full workup, resulted in 60% less additional
diagnostics while outperforming themultimodal predictionmodel in all patients. A visualization tool was created to provide inter-
active visualizations (https://pln.ecgx.ai).

CONCLUSION Our deep learning–based algorithm based on ECG data only accurately predicts the occurrence of MVA in PLN
p.(Arg14del) carriers, enabling more efficient stratification of patients who need additional diagnostic testing and follow-up.
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Introduction

Phospholamban (PLN) p.(Arg14del) cardiomyopathy is an in-
herited disease caused by a pathogenic genetic variant in
the gene encoding the phospholamban protein.1,2 This
causes this protein to misfold, which in turn causes defects
in the regulation of the sarcoplasmic reticulum Ca21 pump.3

This disturbance in the Ca21 homeostasis of the cardiomyo-
cyte eventually affects the composition of cardiac tissue, re-
sulting in structural abnormalities such as cardiac fibrosis
that cause, among others, distinct electrocardiographic
changes (lowQRS voltage in the extremity leads and negative
T waves).4–6

The pathogenic PLN p.(Arg14del) variant is associatedwith
an arrhythmogenic or dilated cardiomyopathy characterized
by progressive heart failure, malignant ventricular arrhythmia
(MVA), and sudden cardiac death.7 All of these characteristics
may already have occurred at a young age, but not all carriers
of this genetic variant have symptoms because of its incom-
plete penetrance. The PLN p.(Arg14del) genetic variant is a
founder mutation in The Netherlands; its prevalence is esti-
mated to be 1:500–1000 in large parts of the country. It has
also been identified in several other countries, including
Spain, Greece, Vietnam, China, Japan, Canada, and the
United States.8,9 The relatively high prevalence in The
Netherlands enables the compilation of uniquely large data
sets.

There is no evidence-based disease-modifying therapy
available for PLN p.(Arg14del) cardiomyopathy, although im-
plantation of an implantable cardioverter-defibrillator (ICD)
may improve outcomes. Affected patients are currently
treated according to general clinical guidelines, with risk
score algorithms being used to identify carriers at particular
risk of MVA. The latest validated risk score algorithm uses
data fromHolter registration, electrocardiography, echocardi-
ography, and cardiac magnetic resonance imaging.1

Current prediction models use manual interpretation of
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the electrocardiogram (ECG),
but reports have shown that
deep neural networks, a type
of artificial intelligence (AI),
can be trained to discover
more complex patterns in
ECGs to diagnose PLN
p.(Arg14del) cardiomyopa-
thy.10,11 Although the need
for large data sets and the
lack of interpretability were
former common drawbacks of
deep learning, a novel tech-
nique that uses a variational
auto-encoder (the FactorECG)
broadens the applicability of
deep neural networks to much
smaller data sets while also
providing improved explain-
ability (ie, explaining which
ECG morphology is associated with the outcome).12–14 The
aim of this study was to evaluate whether this explainable
deep learning–based approach could be implemented to
assess the risk ofMVA using only ECGdata, allowing clinicians
to make more informed decisions about patient management
while simultaneously reducing the total health care burden of
this disease.
Methods

Study population and clinical data acquisition

All index patients and relatives carrying the PLN p.(Arg14del)
variant were identified from a large nationwide registry. Pa-
tients who were genetically evaluated in the University Medi-
cal Center Utrecht, University Medical Center Groningen, and
Amsterdam University Medical Center between 2009 and
2020 were included in the study. Clinical data were collected
by chart review from the first clinical contact until last follow-
up in both the university and non-university medical centers.
Data acquired within 1 year of the first clinical contact and
before the first event of MVA were used for training the algo-
rithm. For additional analyses, all ECGs before the first event
or end of follow-up were considered. Design and detailed
data collection of the nationwide registry have been
described in detail before.15 This study followed the Code
of Conduct and the Use of Data in Health Research and was
approved by local ethics or institutional review boards.
Electrocardiographic data acquisition

All raw 10-second 12-lead ECGs of the included patients were
extracted from the MUSE ECG system (MUSE version 8; GE
Healthcare, Chicago, IL) from the 3 university medical centers
and resampled to 500 Hz using linear interpolation, if neces-
sary. All ECGs were converted into median beats by aligning
all primary QRS complexes (eg, excluding premature ventric-
ular complexes) and taking the median voltage.16
Clinical outcomes

The primary outcome of MVA was defined, as previously, as a
composite of sustained ventricular tachycardia (>30 seconds
or terminated electrically or pharmacologically), ventricular
fibrillation, appropriate ICD intervention, or (aborted) sudden
cardiac death.1
Explainable deep neural network

A recently developed approach that uses a deep neural
network to learn explainable features from the 12-lead me-
dian beat ECG was employed. These features are explainable
in the sense that the clinician obtaining an output from the
deep neural network can visualize the ECG morphology that
was associated with the outcome.12 In this approach, a gener-
ative deep neural network, called variational auto-encoder
(VAE), is used to learn the underlying generative factors of
the ECG without any assumptions. This VAE consists of 3
parts—an encoder, the FactorECG (32 continuous factors),
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and a decoder—and was pretrained by learning to recon-
struct 1,144,331 ECGs of 251,473 patients using only the 32
factors. For training of the VAE, we used all ECGs obtained
in the University Medical Center Utrecht across different de-
partments between 1991 and 2000. Overlap in the pretrain-
ing cohort and patients included in this study was negligible
at 0.01% and could not influence the results because the
VAE was trained unsupervised (ie, without any knowledge of
the MVA outcome). After training, the pretrained encoder
can be used to convert any median beat ECG into its Factor-
ECG, the distinctive set of 32 factors that represent that ECG.
In the development study of the FactorECG, we have shown
that only 21 factors encode relevant information about the
ECG morphology.12 In this analysis, we used these 21 contin-
uous factors as input to the Cox and logistic regressions
models (Figure 1). The VAE tries to reconstruct the 12-lead
median beats, and when the reconstruction is very different
from the original, this is marker of poor ECG quality or encod-
ing. Therefore, we excluded all ECGs with a Pearson correla-
tion between original and reconstructed ECG below 0.5.

The individual ECG factors can be made explainable on
both the model and individual patient level. This was done
on the model level by varying the values of the factors individ-
ually between 23 and 3 while generating the median beat
ECG using the decoder. As the other factors are kept con-
stant, the individual influence of that factor on the ECG
A B

Figure 1
Schematic overview of the applied deep learning–based strategy. In the pretraining
median beat electrocardiograms (ECGs) to learn to reconstruct the ECG as accurate
trained VAE is used to convert the PLN variant carrier ECGs into their FactorECG (B).
previous study were selected and used in a Cox regression model to predict maligna
ECG features were important for prediction. DNN 5 deep neural network.
morphology can be visualized. Patient-level explanations
can be obtained by investigating the FactorECG values of
that specific ECG and the coefficients of the prediction
model. In this way, we could determine which factors were
important in a specific patient to make the prediction. Interac-
tive visualizations of the model are available on https://pln.
ecgx.ai. The architecture and training procedures for the Fac-
torECG have been described in detail before.12
Predictor variables

Three different sets of predictors were evaluated and
compared. Two ECG-only predictor sets, 1 baseline with the
accepted conventional ECG criteria (number of leads with
negative T waves and presence of low QRS voltage) and 1
with the standardized FactorECG values, were compared
with the predictor set used in the multimodal prediction
model (the 2 conventional ECG criteria, number of premature
ventricular complexes on Holter monitoring and left ventricu-
lar ejection fraction [LVEF]).1 Given the low number of events
in this cohort, we selected 12 of the 21 ECG factors most asso-
ciated with a reduced LVEF in a previous study to achieve at
least 5.84 events per predictor.12 These ECG factors were
chosen as reduced LVEF was shown to be a strong predictor
for MVA.1 This number was optimized for the proposed anal-
ysis, expected data set, and model fit using an approach as
phase, the variational auto-encoder (VAE) is trained on a data set of 1.1 million
ly as possible in 32 variables (the FactorECG; A). In the training phase, the pre-
Of these, 6 ECG factors that were associated with reduced ejection fraction in a
nt ventricular arrhythmia. The pretrained decoder can be used to visualize which

https://pln.ecgx.ai
https://pln.ecgx.ai


Table 1 Baseline characteristics of the study population

Characteristic Missing Overall (N 5 679)
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proposed by Riley and coworkers17 with the R package
pmsampsize. Detailed definitions of all predictor variables
have been described before.1
Patient demographics
Age, y 0 (0) 42 (27–55)
Male sex 0 (0) 294 (43)
Proband 6 (1) 113 (17)

History
First-degree family
member with MVA

0 (0) 91 (13)

NYHA class >I 0 (0) 62 (9.1)
Electrocardiography

Ventricular rate, beats/
min

228 (34) 71 (63–81)

PR duration, ms 239 (35) 148 (132–164)
QRS duration, ms 228 (34) 86 (80–98)
Corrected QT duration,
ms

228 (34) 411 (398–430)

No. of leads with
negative T waves

120 (18) 1 (0–2)

Low-voltage ECG 61 (9) 95 (15)
NSVT on Holter
monitoring

0 (0) 67 (10)

24-hour PVC count >500 273 (40) 125 (31)
Imaging

LVEF 224 (33) 54 (48–60)
RVEF 146 (22) 65 (50–65)
MRI LGE 417 (61) 77 (29)

Outcomes
MVA 0 (0) 72 (10)
Duration of follow-up, y 0 (0) 4.3 (1.7–7.4)

Categorical variables are presented as number (percentage). Continuous vari-
ables are presented as median (interquartile range).
ECG 5 electrocardiogram; LGE 5 late gadolinium enhancement; LVEF 5 left
ventricular ejection fraction; MRI 5 magnetic resonance imaging; MVA 5 ma-
lignant ventricular arrhythmia; NSVT 5 nonsustained ventricular arrhythmia;
NYHA 5 New York Heart Association; proband 5 first member of a family in
whom the PLN p.(Arg14del) variant was found; PVC 5 premature ventricular
complex; RVEF 5 right ventricular ejection fraction.
Clinical utility

Potential consequences of using the different prediction
models to determine ICD implantation with different thresh-
olds for 5-year risk of MVA were explored. For each model
and threshold, the model was used to determine which pa-
tients would receive an ICD implantation. Afterward, we
labeled carriers who had an ICD implanted and experienced
MVA as true positives as these carriers might have suffered
from sudden cardiac death without an ICD. On the other
hand, carriers who had no ICD implanted and also did not
experience MVA were labeled true negatives; in these car-
riers, we correctly refrained from implanting an ICD, given
the risk of adverse effects such as inappropriate shock, infec-
tion, collapsed lung, and others. Following from this, carriers
who had an ICD but did not experience MVA or had no ICD
but did experienceMVAwere labeled false positives and false
negatives.

In addition to the 3 predictor sets, we evaluated a 2-step
approach whereby only patients with a high predicted risk
by the ECG-only FactorECG model were referred for addi-
tional diagnostics. With this approach, fewer additional diag-
nostics might be needed as not all diagnostic tests need to be
performed on all patients at every follow-up appointment. In
that subgroup, we simulated that echocardiography and 24-
hour Holter monitoring were performed, and if a carrier had
an LVEF <50% or >500 premature ventricular complexes
per 24 hours on Holter monitoring, an ICD was implanted.
The risk threshold for additional diagnostics was chosen at
the best tradeoff of positive and negative predictive value in
the current cohort.
Statistical analysis

Multivariable Cox proportional hazards models were used to
evaluate the effect of the 3 different predictor sets on the risk
of MVA while taking the time-to-event into account. For all
models, the proportional hazards assumption was verified,
and nonlinear relationships were investigated by natural cu-
bic splines. Multivariable hazard ratios (HRs) were reported
to investigate the effect of the different predictors on
MVA. As the ECG factors were standardized, the HR was
also used as a measure of importance for the individual
ECG factors. Backward selection by the Akaike information
criterion was used to achieve the sparsest model for the Fac-
torECG predictor set.

As a result of the retrospective design, there were missing
values in some predictor variables. Missing data were consid-
ered missing at random, and multiple imputation using
chained equations was performed (with all characteristics
from Table 1 and the ECG factors). Given a mean proportion
of missing values of approximately 30%, we generated 30
imputed data sets.18 Results on the imputed data sets were
pooled with Rubin’s rules.
Internal validation of the discriminatory performance (as
measured by Harrell’s C statistic) was performed by a
bootstrap-based optimism estimation technique. Here, all
model development steps (including multiple imputation
and pooling using Rubin’s rules) were repeated on 500 boot-
strap samples.19 Each new pooled model was tested on the
original data, and the optimism was defined as the mean dif-
ference in the C statistic between the original and bootstrap-
ped data sets. This value is subtracted from the apparent
performance measure (ie, the C statistic in original data from
a model fitted on the original data).20 These optimism-
corrected measures have been shown to be an unbiased esti-
mate of the generalizability of the model, without losing any
data for training.21 The bootstrap samples were also used to
determine the 95% confidence intervals (CIs) around the C
statistic. Permutation tests were used to compare the C statis-
tic from the different predictors sets.

In addition, we computed a range of performance metrics
at the clinically accepted risk time frame of 5 years. At this time
point, the predicted 5-year risk of MVA was derived for the
different models. The area under the receiver operating curve
(AUROC) and area under the precision recall curve (AUPRC)
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were computed for this predicted risk. Moreover, net reclassi-
fication improvement (NRI), sensitivity, specificity, and posi-
tive and negative predictive values were derived at 3
different prespecified clinically used probability cutoffs: 5%,
7.5%, and 10%.22 Finally, we investigated the robustness of
the algorithm for different ECGs of the same patient by calcu-
lating the median of the predicted 5-year risk of MVA’s SD per
patient in a single year.

Baseline characteristics were expressed as mean 6 SD or
median with interquartile range (IQR), where applicable. All
statistical analyses were performed with Python version 3.9.
The Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis statement for
the reporting of diagnostic models was followed where appli-
cable.23

Results

Study population

The total cohort consisted of 1067 PLN p.(Arg14del) variant
carriers. After exclusion of patients with MVA at baseline (n
5 65 [6%]), patients without follow-up data (n 5 221 [21%]),
and patients without any baseline test in the participating cen-
ters (n 5 102 [9.6%]), 679 PLN carriers were included in the
analysis. Raw 12-lead ECGwaveforms within 1 year of first pre-
sentation were available for 472 (70%) patients, and of these,
451 (96%) were of adequate quality. Performance of the pre-
trained VAE for the included ECGs was good, with a Pearson
correlation coefficient between original and reconstructed
ECG of 0.89. A total of 72 patients (10%) reached the primary
outcome of MVA during a follow-up of 4.3 years (IQR, 1.7–7.4
years). The composite consisted of appropriate ICD therapy,
sustained ventricular tachycardia/ventricular fibrillation, and
sudden cardiac death in 37, 26, and 9 patients, respectively.
Additional baseline characteristics are shown in Table 1. Dif-
ferences between patients with and without a raw 12-lead
ECG are shown in Supplemental Table 1.

Model performance

The baseline ECG-only model (consisting of the number of
negative T waves and low QRS voltage as predictors) pre-
dicted MVA with an optimism-corrected C statistic of 0.65
(95% CI, 0.58–0.73). The FactorECG model (consisting of 7
ECG factors) outperformed the baseline model with an
optimism-corrected C statistic of 0.79 (95% CI, 0.76–0.83; P
< .001) and was comparable to the multimodal prediction
model (optimism-corrected C statistic of 0.83 [95% CI, 0.79–
0.88]; P 5 .054).

On investigating performance by the clinically accepted 5-
year predicted risk of MVA, the AUROC and AUPRC were
0.67, 0.86, and 0.89 and 0.12, 0.27, and 0.30 for the baseline
ECG-only, FactorECG, and multimodal prediction models,
respectively. The overall NRI for the FactorECG model
compared with the baseline ECG-only was 30 (95% CI, 13–
49), with 42% (95% CI, 26–59) more patients with MVA
correctly moved upward to the group with a risk >7.5%. On
comparing the FactorECG model with the multimodal
prediction model, the NRI was 6.3% (95% CI, 25.3 to 18),
with 6.4% (95% CI, 0.0–14.5) more patients with MVA moved
upward to the group with a risk >7.5%. This indicates that the
FactorECG model identifies more patients with MVA than the
baseline ECG-only model, without missing cases compared
with the multimodal model. An overview of the AUROC,
AUPRC, NRI, sensitivity, specificity, and positive and negative
predictive values at different probability thresholds for all pre-
dictor sets canbe found in Table 2.With use of the 3 prediction
models to stratify carriers in 4 quartiles by their predicted 5-
year risk of MVA, a clear distinction in risk between the groups
can be observed for the FactorECG and multimodal model
(Figure 2A–C). In the lowest 3 risk groups, almost no events
are observed for these models, whereas the baseline ECG-
only model is not able to distinguish groups without events.

On taking multiple ECGs per patient into account, we can
predict the 5-year risk of MVA for every ECG. In total, 3849
ECGs were available of 514 individual patients. The median
SD of these predicted probabilities within an individual pa-
tient, grouped by year, is 0.02 (IQR, 0.008–0.05). A histogram
of the predicted probabilities and an overview of the pre-
dicted probabilities over time can be found in Supplemental
Figures 1 and 2.

The most important predictors in the FactorECG model
were F1 (inferolateral ST-segment and T-wave morphology;
HR, 0.56 [0.39–0.81]) and F5 (inferolateral negative T waves;
HR, 2.48 [1.70–3.61]); in the multimodal model, LVEF (HR,
0.96 per 1% increase [95%CI, 0.94–0.98]) and 24-hour prema-
ture ventricular complex count (HR, 1.33 per 1 log increase
[95% CI, 1.16–1.55]) were most predictive. Multivariable HRs
and CIs for all prediction models are shown in Table 3. Similar
HRs were found in predicting only appropriate ICD therapy
and only ventricular tachycardia/ventricular fibrillation and
sudden cardiac death. Univariable HRs and HRs for the sepa-
rate end points in the composite can be found in
Supplemental Tables 2 and 3.
Clinical applicability

Different scenarios with varying thresholds for the 5-year pre-
dicted risk ofMVA to determine which patients should receive
an ICD implantation were investigated (Figure 3). At a clini-
cally accepted 5-year risk threshold of 5% (1% risk per year),
the baseline ECG-only model performed the worst with a
sensitivity of 80% and specificity of only 36%. The FactorECG
model outperformed the baseline model with a sensitivity of
92% and specificity of 52%, whereas the multimodal model
had a higher specificity of 62% and higher sensitivity of
95%. This indicates that when the FactorECG model is used
at a 5% threshold, a similar number of patients that will expe-
rience MVA without having an ICD implanted are missed, at
the cost of implanting more ICDs. A similar trend is observed
at the higher 5-year risk thresholds of 7.5% and 10%, in which
significantly fewer ICDs are implanted but with more false
negatives.

Next to the implementation of the models alone, a more
clinically applicable 2-step approach was investigated



Table 2 Prognostic performance measures for the predicted risk of malignant ventricular arrhythmia at 5 years for the different predictor sets
(A–C) at 3 different probability cutoffs and the 2-step approach (D)

A. Baseline ECG-only B. FactorECG C. Multimodal

D. 2-step5% 7.5% 10% 5% 7.5% 10% 5% 7.5% 10%

AUROC 0.68 0.86 0.89 NA
AUPRC 0.12 0.27 0.30 NA
Sensitivity 80 52 45 92 90 82 95 90 78 90
Specificity 36 75 83 52 64 74 62 71 78 75
PPV 7 12 14 11 14 16 13 16 18 18
NPV 97 96 96 99 99 98 100 99 98 99
NRI Ref Ref Ref 34a 30a 28a 13a 6 7 NA
NRIe Ref Ref Ref 16 38a 36a 4 1 3 NA
NRIne Ref Ref Ref 19a 28a 28a 8a 5a 4a NA

The net reclassification improvement (NRI) was computed in comparison to the predictor set A for predictor set B and in comparison to the predictor set B for pre-
dictor set C.
AUPRC5 area under the precision recall curve; AUROC5 area under the receiver operating curve; NA5 not applicable; NPV5 negative predictive value; NRIe5 net
reclassification improvement for patients with an event; NRIne 5 net reclassification improvement for patients without an event; PPV 5 positive predictive value.
aStatistically significant.
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(Figure 4). With this simulated approach, all patients first
have an ECG; and then, only in the high-risk patients as
predicted by the FactorECG model, echocardiography
A

C

Figure 2
Kaplan-Meier plots for the different predictor sets (A–C) and the 2-step approach (D
tricular arrhythmia (VA) is split in 4 quartiles (risk groups). For the 2-step approach, an a
using the FactorECG model were referred for additional diagnostics. In that subgro
performed. ECG 5 electrocardiogram; LVEF 5 left ventricular ejection fraction; PVC
and Holter monitoring data are needed. A threshold to
determine which patients were high risk of 7.5% was used
as this provided the best tradeoff of positive and negative
B

D

). For the prediction models (A–C), the 5-year predicted risk of malignant ven-
pproach was simulated whereby only patients with a high predicted risk (>7.5%)
up, we simulated that echocardiography and 24-hour Holter monitoring were
5 premature ventricular complex.



Table 3 Hazard ratios, confidence intervals, and P values for the
different predictor sets evaluated in multivariable Cox propor-
tional hazards models

Predictor HR (95% CI) P value

Baseline ECG-only model
No. of leads with negative T
waves

1.12 (1.00–1.24) .03

Low QRS voltage 3.52 (2.07–5.97) <.001
FactorECG model
Factor 1 0.56 (0.39–0.81) <.001
Factor 5 2.48 (1.70–3.61) <.001
Factor 8 1.24 (0.93–1.65) .14
Factor 12 1.50 (1.10–2.04) .01
Factor 25 0.73 (0.54–1.01) .05
Factor 26 0.74 (0.55–0.99) .043
Factor 30 0.76 (0.58–0.99) .046

Multimodal model
No. of leads with negative T
waves

1.10 (0.89–1.23) .10

Low QRS voltage 1.76 (0.98–3.20) .06
LVEF (per % increase) 0.96 (0.94–0.98) <.001
24-hour PVC count (per 1 log
increase)

1.34 (1.16–1.54) <.001

CI 5 confidence interval; HR 5 hazard ratio; other abbreviations as in Table 1.
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predictive value (ie, referring the least amount of patients
without missing too many patients with MVA). In applying
this risk threshold, only 39% of patients need to be
referred. In this referred group, we simulated an ICD im-
plantation when either the LVEF was <50% or >500 prema-
ture ventricular complexes per 24 hours on Holter
A B

Figure 3
Clinical utility plots for the different predictor sets (A–C) and the 2-step approach (D)
lignant ventricular arrhythmia (VA) thresholds for the decision to implant an implant
simulated whereby only patients with a high predicted risk (>7.5%) using the FactorE
lated that echocardiography and 24-hour Holter monitoring were performed, and if
ular complexes per 24 hours on Holter monitoring, an ICD was implanted. ECG 5 e
monitoring were recorded. This 2-step approach outper-
formed all other models with a sensitivity of 88% and spec-
ificity of 76% (Figure 3).
Model explainability

F1 (inferolateral ST-segment and T-wavemorphology) and F5
(inferolateral negative T waves) were significantly associated
with the risk of MVA during follow-up, with more negative
values corresponding to a higher risk for F1 and more posi-
tive values for F5. Both these factors represent the shape of
the inferolateral ST segment and T wave and are significantly
correlated with each other in this population (Pearson r 5
20.39; P < .001). The factor traversals of a combined change
in F1 and F5 showed that this combination represents a
change in ECG morphology from normal QRS voltage and
repolarization toward lower QRS voltage and inferolateral
symmetrical negative T waves without any ST deviation
(Figure 5). Interestingly, the effect of this morphologic
change was nonlinearly related with the predicted 5-year
risk of MVA, and the risk already exceeded 5% when the T
waves are still positive (Figure 5). Other factors were not
significantly correlated (Pearson r < 0.22 for all) in this popu-
lation, and their factor traversals are therefore shown for
each factor individually in Supplemental Figures 3–7. The vi-
sualizations show that increased PR interval (factor 8),
reduced R-wave height in V2 through V4 (factor 12), right
bundle branch block–like QRS morphology (factor 25), in-
ferolateral T-wave morphology (factor 26), and increased
QT interval (factor 30) are also associated with increased
risk of MVA.
C D

. The bars represent the clinical implications of using different 5-year risk of ma-
able cardioverter-defibrillator (ICD). For the 2-step approach, an approach was
CG model were referred for additional diagnostics. In that subgroup, we simu-
a carrier had a left ventricular ejection fraction <50% or >500 premature ventric-
lectrocardiogram.



Figure 4
Overview of the 2-step approach. An approach was simulated in which all PLN
variant carriers first have an electrocardiogram (ECG) only. This ECG is evalu-
ated by the FactorECG prediction model, and only the high-risk patients are
referred for additional diagnostics (echocardiography and 24-hour Holter moni-
toring). When carriers had a left ventricular ejection fraction (LVEF) <50% or a
premature ventricular complex (PVC) count >500 per 24 hours on Holter moni-
toring, an implantable cardioverter-defibrillator (ICD) was implanted.
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Discussion

This study shows that an explainable deep learning–based
approach using only ECG data is able to predict the risk of
MVA with an optimism-corrected C statistic 0.79 (95% CI,
0.75–0.85) in a large cohort of PLN p.(Arg14del) carriers.
Addition of echocardiographic and Holter monitoring data
in the group with high predicted risk based on the FactorECG
improved predictive ability further (ie, a 2-step approach),
outperforming the current multimodal model in all patients.
Such a 2-step approach could allow more efficient risk stratifi-
cation of PLN p.(Arg14del) carriers; reduce the burden of
monitoring visits for these carriers; and lead to a significant
decrease in costs by reducing the number of visits, diagnos-
tics, and ICD implantations. Deep learning–based ECG anal-
ysis may enhance the possibilities for remote monitoring of
genetic variant carriers. An online tool to convert any ECG
into its FactorECG and to predict prognosis in PLN patients
is available through https://pln.ecgx.ai.

Clinical applicability and prior studies

This is the first study attempting risk stratification in carriers of
the PLN p.(Arg14del) genetic variant using only ECG data.
The current best practice in risk stratification of known PLN
p.(Arg14del) carriers involves the use of a risk score combining
structural, electrophysiologic, and functional parameters.1
Thismultimodal algorithm has an optimism-corrected C statis-
tic of 0.83 (95%CI, 0.79–0.88) in the current analysis. Whereas
an ECG-only model containing conventional ECG features of
PLN cardiomyopathy (lowQRS voltage and negative T waves)
was not able to reach similar predictive performance (opti-
mism-corrected C statistic of 0.65 [95% CI, 0.58–0.73]), the
deep learning–based ECG-only model did perform compa-
rably (optimism-corrected C statistic of 0.79 [95% CI, 0.76–
0.83]). Net reclassification analysis confirmed that the Factor-
ECG algorithm outperformed the baseline ECG-onlymodel at
all risk thresholds, without missing patients with MVA within 5
years compared with the multimodal algorithm (Table 2).

Clinically, such an ECG-only algorithm could be used in a
2-step approach involving a first pass with the ECG model
alone, followed by additional diagnostics in patients deemed
at risk of MVA. The multimodal algorithm would not be
feasible for such a 2-step approach because it requires
many different modalities of diagnostic data. If acceptable
negative predictive values can be achieved with only ECG
(possibly at home or by the general practitioner), the large
burden of monitoring visits could be reduced, especially for
asymptomatic carriers. Whereas the conventional ECG-only
model did not reach adequate negative predictive values to
be usable in such an approach, the FactorECG model was
able to reach a negative predictive value of 99% in 61% of
the patients at a 5-year risk threshold of 7.5%. As visualized
in Figure 3, this results in more accurate risk prediction than
either method alone as well as being more accurate than
the multimodal model in all patients.

The presence of the PLN p.(Arg14del) genetic variant is es-
tablished by genotyping of potentially affected index patients
presenting with related signs and symptoms, followed by ge-
netic cascade screening in close family members. Both Blei-
jendaal and coworkers10 and van de Leur and coworkers11

have shown that a deep learning–based approach may aid
in the diagnosis of the genetic variant in the general popula-
tion as well, aiding in the identification of the index patients.
This study builds on their results by providing the risk stratifi-
cation required for optimal management after initial diag-
nosis.

Explaining the AI algorithm

The term black box is often used to describe models resulting
from the extensive training of a machine learning algorithm.24

These models may become too complex to be interpreted by
humans using them to reach an output from a given input,
which in turn may cause a level of distrust in the output.25

Our approach provides improved explainability by allowing
clinicians to visualize the influence of specific median beat
ECG morphology on the predictions.12,26 Previous studies
have shown that a similar approach with the FactorECG can
be used to predict risk of MVA in patients with dilated cardio-
myopathy and outcomes in cardiac resynchronization therapy
recipients.13,14

Our visualizations confirm that the FactorECG prediction is
mostly based on known PLN cardiomyopathy ECG features

https://pln.ecgx.ai


Figure 5
Factor traversals for the 2 most important electrocardiogram factors to visualize electrocardiographic features that the model used to predict malignant ventricular
arrhythmia (MVA). In the current plot, we varied the values for factor 1 and factor 5 simultaneously as these factors are strongly correlated in the current population while
keeping the other factors constant at their mean value. For each combination, the 5-year risk of MVA is derived by the Cox regression model and visualized.
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(eg, reducedQRS voltage and inferolateral symmetrical nega-
tive T waves as represented by the combinations of F1 and F5),
as shown in Figure 5. Interestingly, it uses these features as a
continuous spectrum and already predicts a risk higher than
the threshold of 5% before the appearance of negative T
waves, but only with a reduced R- and T-wave height. This
might explain why the model outperforms the baseline
ECG-only model, as this uses binary cutoff points for QRS
voltage and negative T waves. Other ECG features shown
by the visualizations are an increased PR interval (F8;
Supplemental Figure 3), rSR0 in V1 with slurred S waves infer-
olaterally (F25; Supplemental Figure 5), and reduced lateral
T-wave height (F26; Supplemental Figure 6), although all
borderline significant (Table 2). We expect that this direct
input-output relationship makes using the algorithm a more
attractive option to clinicians by increasing trust in the
outcome. An interactive tool for explainability is available
through https://pln.ecgx.ai.
Strengths and limitations

The main strength of this study is that the PLN registry al-
lowed leveraging of a uniquely large cohort of deeply phe-
notyped PLN p.(Arg14del) carriers.15 However, there are
several limitations to this study. First, no external validation
for the prediction models or the risk thresholds in the 2-
step scenario analysis could be performed as there are
currently no other cohorts of PLN p.(Arg14del) carriers avail-
able. To minimize the risk of overoptimism, we prespecified
our predictor sets before the analysis, selected a limited
number of predictors in every model, and performed a
rigorous internal validation using a bootstrap-based resam-
pling technique.21 Second, the retrospective nature of the
data comes with missing values; sufficient data for analysis
were available for 679 of 1002 eligible patients, 451 with a
baseline raw ECG of adequate quality (45% of those
eligible). Missingness is mostly due to the long time span
of the cohort; the first medical contact for some patients
occurred in the 1990s in many different hospitals across
The Netherlands and preceded the genetic diagnosis. This
meant that many patients did not have any diagnostic tests
or follow-up available. Moreover, we were only able to ac-
cess the raw 12-lead ECGs of the patients with their first
medical contact in the 3 university medical centers, leading
to additional missingness. Most important, there was no dif-
ference in the occurrence of MVA between patients with and
without a raw 12-lead ECG. Third, the primary outcome of
MVA was defined as a composite of several end points,
one of which was appropriate ICD intervention. Thus, appro-
priate ICD intervention was given the sameweight as sudden
cardiac death or ventricular fibrillation, similar to the current
prediction model in PLN p.(Arg14del) variant carriers. This
may result in an overestimation of the true 5-year risk of sud-
den cardiac death because not all appropriate ICD interven-
tions equate with cardiac arrest. Removing ICD recipients,
however, would not be a valid alternative; this would mean
all high-risk carriers are removed, leading to selection bias
and underestimation of the true sudden cardiac death risk.
Reassuringly, HRs for the ECG factors were similar in evalu-
ating the end points in the composite (appropriate ICD ther-
apy, ventricular tachycardia/ventricular fibrillation, and
sudden cardiac death) separately (Supplemental Figure 3).

https://pln.ecgx.ai
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Finally, we were not able to provide metrics for the 10-year
predicted risk of MVA as we have a median follow-up dura-
tion of only 4.3 years. Given that the ICD battery life is
around 10 years, false positives and true negatives (ie, pa-
tients who did not experience MVA) are relative as they
can have MVA after 5 years.
ceuticals GmbH, Ionis Pharmaceuticals, Inc, Novo Nordisk,
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Future perspectives

A machine learning–based approach could aid in both
diagnosis of the cardiomyopathy-associated variant and
risk stratification to help clinicians more efficiently organize
their health care system. Currently, the PLN p.(Arg14del)
genetic variant is mainly prevalent in The Netherlands. As
more affected families and relatives are identified, both in
The Netherlands and abroad, the health care burden of
diagnosis and risk assessment will rise. This is of importance
because with rising health care costs and the high barriers
to accessing health care in some nations, deep learning–
based ECG analysis can provide a remote solution to
manage this group of patients. Moreover, the approach in
this study may also be of use for researchers studying other
uncommon types of (genetic) cardiomyopathy.
Conclusion

An ECG-only explainable deep learning–based algorithm is
able to predict the occurrence of MVA in PLN p.(Arg14del)
carriers with an optimism-corrected C statistic of 0.79 (95%
CI, 0.75–0.85), which could allow an alternative stratification
relying on the ECG only, precluding additional diagnostics
and follow-up. Such a 2-step approach could reduce the
burden of monitoring visits for PLN p.(Arg14del) carriers and
lead to a significant decrease in costs by reducing the number
of visits, diagnostics, and ICD implantations.

Appendix

Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2024.
02.038.
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