249 research outputs found

    Structure factors of harmonic and anharmonic Fibonacci chains by molecular dynamics simulations

    Full text link
    The dynamics of quasicrystals is characterized by the existence of phason excitations in addition to the usual phonon modes. In order to investigate their interplay on an elementary level we resort to various one-dimensional model systems. The main observables are the static, the incoherent, and the coherent structure factor, which are extracted from molecular dynamics simulations. For the validation of the algorithms, results for the harmonic periodic chain are presented. We then study the Fibonacci chain with harmonic and anharmonic interaction potentials. In the dynamic Fibonacci chain neighboring atoms interact by double-well potentials allowing for phason flips. The difference between the structure factors of the dynamic and the harmonic Fibonacci chain lies in the temperature dependence of the phonon line width. If a bias is introduced in the well depth, dispersionless optic phonon bands split off.Comment: 12 pages, 15 figure

    Continuum elastic sphere vibrations as a model for low-lying optical modes in icosahedral quasicrystals

    Full text link
    The nearly dispersionless, so-called "optical" vibrational modes observed by inelastic neutron scattering from icosahedral Al-Pd-Mn and Zn-Mg-Y quasicrystals are found to correspond well to modes of a continuum elastic sphere that has the same diameter as the corresponding icosahedral basic units of the quasicrystal. When the sphere is considered as free, most of the experimentally found modes can be accounted for, in both systems. Taking into account the mechanical connection between the clusters and the remainder of the quasicrystal allows a complete assignment of all optical modes in the case of Al-Pd-Mn. This approach provides support to the relevance of clusters in the vibrational properties of quasicrystals.Comment: 9 pages without figure

    Structure of smectic defect cores: an X-ray study of 8CB liquid crystal ultra-thin films

    Get PDF
    We study the structure of very thin liquid crystal films frustrated by antagonistic anchorings in the smectic phase. In a cylindrical geometry, the structure is dominated by the defects for film thicknesses smaller than 150 nm and the detailed topology of the defects cores can be revealed by x-ray diffraction. They appear to be split in half tube-shaped Rotating Grain Boundaries (RGB). We determine the RGB spatial extension and evaluate its energy per unit line. Both are significantly larger than the ones usually proposed in the literatureComment: 4 page

    Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields

    Full text link
    Quasicrystals provide a fascinating class of materials with intriguing properties. Despite a strong potential for numerous technical applications, the conditions under which quasicrystals form are still poorly understood. Currently, it is not clear why most quasicrystals hold 5- or 10-fold symmetry but no single example with 7 or 9-fold symmetry has ever been observed. Here we report on geometrical constraints which impede the formation of quasicrystals with certain symmetries in a colloidal model system. Experimentally, colloidal quasicrystals are created by subjecting micron-sized particles to two-dimensional quasiperiodic potential landscapes created by n=5 or seven laser beams. Our results clearly demonstrate that quasicrystalline order is much easier established for n = 5 compared to n = 7. With increasing laser intensity we observe that the colloids first adopt quasiperiodic order at local areas which then laterally grow until an extended quasicrystalline layer forms. As nucleation sites where quasiperiodicity originates, we identify highly symmetric motifs in the laser pattern. We find that their density strongly varies with n and surprisingly is smallest exactly for those quasicrystalline symmetries which have never been observed in atomic systems. Since such high symmetry motifs also exist in atomic quasicrystals where they act as preferential adsorption sites, this suggests that it is indeed the deficiency of such motifs which accounts for the absence of materials with e.g. 7-fold symmetry

    Icosahedral multi-component model sets

    Full text link
    A quasiperiodic packing Q of interpenetrating copies of C, most of them only partially occupied, can be defined in terms of the strip projection method for any icosahedral cluster C. We show that in the case when the coordinates of the vectors of C belong to the quadratic field Q[\sqrt{5}] the dimension of the superspace can be reduced, namely, Q can be re-defined as a multi-component model set by using a 6-dimensional superspace.Comment: 7 pages, LaTeX2e in IOP styl

    2D honeycomb transformation into dodecagonal quasicrystals driven by electrostatic forces

    Get PDF
    Dodecagonal oxide quasicrystals are well established as examples of long-range aperiodic order in two dimensions. However, despite investigations by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), low-energy electron microscopy (LEEM), photoemission spectroscopy as well as density functional theory (DFT), their structure is still controversial. Furthermore, the principles that guide the formation of quasicrystals (QCs) in oxides are elusive since the principles that are known to drive metallic QCs are expected to fail for oxides. Here we demonstrate the solution of the oxide QC structure by synchrotron-radiation based surface x-ray diffraction (SXRD) refinement of its largest-known approximant. The oxide QC formation is forced by large alkaline earth metal atoms and the reduction of their mutual electrostatic repulsion. It drives the n = 6 structure of the 2D Ti2O3 honeycomb arrangement via Stone–Wales transformations into an ordered structure with empty n = 4, singly occupied n = 7 and doubly occupied n = 10 rings, as supported by DFT

    Sound modes broadening for Fibonacci one dimensional quasicrystals

    Full text link
    We investigate vibrational excitation broadening in one dimensional Fibonacci model of quasicrystals (QCs). The chain is constructed from particles with two masses following the Fibonacci inflation rule. The eigenmode spectrum depends crucially on the mass ratio. We calculate the eigenstates and eigenfunctions. All calculations performed self-consistently within the regular expansion over the three wave coupling constant. The approach can be extended to three dimensional systems. We find that in the intermediate range of mode coupling constants, three-wave broadening for the both types of systems (1D Fibonacci and 3D QCs) depends universally on frequency. Our general qualitative conclusion is that for a system with a non-simple elementary cell phonon spectrum broadening is always larger than for a system with a primitive cell (provided all other characteristics are the same).Comment: 2o pages, 15 figure
    • …
    corecore