13,007 research outputs found

    Spontaneous electro-weak symmetry breaking and cold dark matter

    Full text link
    In the standard model, the weak gauge bosons and fermions obtain mass after spontaneous electro-weak symmetry breaking, which is realized through one fundamental scalar field, namely Higgs field. In this paper we study the simplest scalar cold dark matter model in which the scalar cold dark matter also obtains mass through interaction with the weak-doublet Higgs field, the same way as those of weak gauge bosons and fermions. Our study shows that the correct cold dark matter relic abundance within 3σ3\sigma uncertainty (0.093<Ωdmh2<0.129 0.093 < \Omega_{dm} h^2 < 0.129 ) and experimentally allowed Higgs boson mass (114.4mh208114.4 \le m_h \le 208 GeV) constrain the scalar dark matter mass within 48mS7848 \le m_S \le 78 GeV. This result is in excellent agreement with that of W. de Boer et.al. (5010050 \sim 100 GeV). Such kind of dark matter annihilation can account for the observed gamma rays excess (10σ10\sigma) at EGRET for energies above 1 GeV in comparison with the expectations from conventional Galactic models. We also investigate other phenomenological consequences of this model. For example, the Higgs boson decays dominantly into scalar cold dark matter if its mass lies within 486448 \sim 64 GeV.Comment: 4 Revtex4 pages, refs adde

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    Organic Single-Crystal Field-Effect Transistors

    Full text link
    We present an overview of recent studies of the charge transport in the field effect transistors on the surface of single crystals of organic low-molecular-weight materials. We first discuss in detail the technological progress that has made these investigations possible. Particular attention is devoted to the growth and characterization of single crystals of organic materials and to different techniques that have been developed for device fabrication. We then concentrate on the measurements of the electrical characteristics. In most cases, these characteristics are highly reproducible and demonstrate the quality of the single crystal transistors. Particularly noticeable are the small sub-threshold slope, the non-monotonic temperature dependence of the mobility, and its weak dependence on the gate voltage. In the best rubrene transistors, room-temperature values of μ\mu as high as 15 cm2^2/Vs have been observed. This represents an order-of-magnitude increase with respect to the highest mobility previously reported for organic thin film transistors. In addition, the highest-quality single-crystal devices exhibit a significant anisotropy of the conduction properties with respect to the crystallographic direction. These observations indicate that the field effect transistors fabricated on single crystals are suitable for the study of the \textit{intrinsic} electronic properties of organic molecular semiconductors. We conclude by indicating some directions in which near-future work should focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on organic semiconductor

    Supersymmetry and LHC

    Get PDF
    The motivation for introduction of supersymmetry in high energy physics as well as a possibility for supersymmetry discovery at LHC (Large Hadronic Collider) are discussed. The main notions of the Minimal Supersymmetric Standard Model (MSSM) are introduced. Different regions of parameter space are analyzed and their phenomenological properties are compared. Discovery potential of LHC for the planned luminosity is shown for different channels. The properties of SUSY Higgs bosons are studied and perspectives of their observation at LHC are briefly outlined.Comment: Lectures given at the 9th Moscow International School of Physics (XXXIV ITEP Winter School of Physics

    An algorithm for calculating the Lorentz angle in silicon detectors

    Full text link
    Future experiments will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is affected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. In this paper measurements of the Lorentz angle of electrons and holes before and after irradiation are reviewed and compared with a simple algorithm to compute the Lorentz angle.Comment: 13 pages, 7 figures, final version accepted by NIMA. Mainly clarifications included and slightly shortene

    Low Mass Dark Matter and Invisible Higgs Width In Darkon Models

    Full text link
    The Standard Model (SM) plus a real gauge-singlet scalar field dubbed darkon (SM+D) is the simplest model possessing a weakly interacting massive particle (WIMP) dark-matter candidate. In this model, the parameters are constrained from dark matter relic density and direct searches. The fact that interaction between darkon and SM particles is only mediated by Higgs boson exchange may lead to significant modifications to the Higgs boson properties. If the dark matter mass is smaller than a half of the Higgs boson mass, the Higgs boson can decay into a pair of darkons resulting in a large invisible branching ratio. The Higgs boson will be searched for at the LHC and may well be discovered in the near future. If a Higgs boson with a small invisible decay width will be found, the SM+D model with small dark matter mass will be in trouble. We find that by extending the SM+D to a two-Higgs-doublet model plus a darkon (THDM+D) it is possible to have a Higgs boson with a small invisible branching ratio and at the same time the dark matter can have a low mass. We also comment on other implications of this model.Comment: RevTeX, 15 pages, 11 figures. A few typos corrected and some references adde

    Diamond thin Film Detectors for Beam Monitoring Devices

    Full text link
    Diamonds offer radiation hard sensors, which can be used directly in primary beams. Here we report on the use of a polycrystalline CVD diamond strip sensor as beam monitor of heavy ion beams with up to 2.10^9 lead ions per bunch. The strips allow for a determination of the transverse beam profile to a fraction of the pitch of the strips, while the timing information yields the longitudinal bunch length with a resolution of the order of a few mm.Comment: 6 pages, 7 figures, to appear in the Proceedings of the Hasselt Diamond Workshop (Hasselt, Belgium, Feb. 2006), v4: accidentally submitted figure, appearing at end, remove

    Triplicity of Quarks and Leptons

    Full text link
    Quarks come in three colors and have electric charges in multiples of one-third. There are also three families of quarks and leptons. Whereas the first two properties can be understood in terms of unification symmetries such as SU(5), SO(10), or E_6, why there should only be three families remains a mystery. I propose how all three properties involving the number three are connected in a fivefold application of the gauge symmetry SU(3).Comment: 10 pages, including 2 figure
    corecore