13 research outputs found

    Error-enhanced augmented proprioceptive feedback in stroke rehabilitation training:a pilot study

    Get PDF
    Augmented feedback plays an essential role in stroke rehabilitation therapy. When a force is applied to the arm, an augmented sensory (proprioceptive) cue is provided. The question was to find out if stroke patients can learn reach-and retrieval movements with error-enhanced augmented sensory feedback. The movements were performed over a predefined path, and when deviating of the path a force is provided, as colliding to a wall of a tunnel. Two chronic stroke survivors (FM of 53 and 49) performed reach and retrieval movements in a virtual tunnel. When two consecutive series of 15 repetitions of the same movements were performed, there was a consistent decrease of collisions to the wall in the second series of movements. This indicates that these patients were able to learn the predefined trajectory by means of augmented proprioceptive feedback. Despite the small number of patients tested, this finding is promising for the usage of error-enhanced augmented proprioceptive feedback in rehabilitation therapy

    Reference genes for QRT-PCR tested under various stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic studies measuring transcriptional responses to changing environments and stress currently make their way into the field of evolutionary ecology and ecotoxicology. To investigate a small to medium number of genes or to confirm large scale microarray studies, Quantitative Reverse Transcriptase PCR (QRT-PCR) can achieve high accuracy of quantification when key standards, such as normalization, are carefully set. In this study, we validated potential reference genes for their use as endogenous controls under different chemical and physical stresses in two species of soil-living Collembola, <it>Folsomia candida </it>and <it>Orchesella cincta</it>. Treatments for <it>F. candida </it>were cadmium exposure, phenanthrene exposure, desiccation, heat shock and pH stress, and for <it>O. cincta </it>cadmium, desiccation, heat shock and starvation.</p> <p>Results</p> <p>Eight potential reference genes for <it>F. candida </it>and seven for <it>O. cincta </it>were ranked by their stability per stress factor using the programs geNorm and Normfinder. For <it>F. candida </it>the succinate dehydrogenase (<it>SDHA</it>) and eukaryotic transcription initiation factor 1A (<it>ETIF</it>) genes were found the most stable over the different treatments, while for <it>O. cincta</it>, the beta actin (<it>ACTb</it>) and tyrosine 3-monooxygenase (<it>YWHAZ</it>) genes were the most stable.</p> <p>Conclusion</p> <p>We present a panel of reference genes for two emerging ecological genomic model species tested under a variety of treatments. Within each species, different treatments resulted in differences in the top stable reference genes. Moreover, the two species differed in suitable reference genes even when exposed to similar stresses. This might be attributed to dissimilarity of physiology. It is vital to rigorously test a panel of reference genes for each species and treatment, in advance of relative quantification of QRT-PCR gene expression measurements.</p

    Foraging site selection of two subspecies of Bar-tailed Godwit Limosa lapponica:time minimizers accept greater predation danger than energy minimizers

    Get PDF
    Different spatial distributions of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been assigned to two subspecies of Bar-tailed Godwits Limosa lapponica that use the European Wadden Sea during northward migration. At the study area on Terschelling, we recorded feeding site selection, time budgets and intake rates (prey/min) in the period that both lapponica (energy minimizer) and taymyrensis (time minimizer) subspecies were present (late April till the end of May 2007). Prey availability (number of prey/m2) was negatively correlated to the distance from cover. Based on sightings of colour-ringed Bar-tailed Godwits, taymyrensis was foraging closer to cover, and for a higher proportion of time than lapponica (67% vs. 33%). During the high tide period taymyrensis was also foraging on inland coastal meadows. Moreover, taymyrensis was more vigilant than lapponica, whereas lapponica showed more resting and preening behaviour. Lapponica had a higher instantaneous intake rate, but taymyrensis had a higher overall intake rate and the birds were more successful in taking larger prey items than lapponica. Supposedly, due to the increased foraging time and additional foraging on the inland meadows, the time-minimizing taymyrensis achieved a higher fuel deposition rate than lapponica. Taymyrensis shifted towards food-rich areas, apparently accepting higher predation risks, whereas energy-minimizing lapponica avoided predation danger by foraging further from cove

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort

    Convergence and Divergence in Direct and Indirect Life-History Traits of Closely Related Parasitoids (Braconidae: Microgastrinae)

    No full text
    Abstract Closely related species in nature often show similarities in suites of direct and indirect traits that reveal aspects of their phylogenetic history. Here we tested how common descent affects trait evolution in several closely related parasitoid species in the genera Cotesia and Microplitis (Hymenoptera: Braconidae: Microgastrinae) by comparing development, resource use and allocation into reproduction and maintenance. Parasitoids in these genera exhibit traits, like haemolymph feeding as larvae and external pupation that are rare in most parasitoid lineages. The growth of parasitized hosts was reduced by 90 % compared with healthy hosts, and maximum host size depended to a large extent on adult parasitoid size. Development time was longer in the more generalist parasitoids than in the specialists. Adult body mass was sexually dimorphic in all Cotesia species, with females being larger, but not in Microplitis spp. In contrast, in one of the Microplitis species males were found to be the larger sex. Egg load dynamics during the first 6 days after emergence were highly variable but egg number was typically higher in Cotesia spp. compared to Microplitis spp. Longevity in the various species was only greater in female than in male wasps in two Microplitis sp. There was a clear inverse relationship between resource use and allocation, e.g. maximum egg load and longevity, in these parasitoids. Our results reveal that adaptation to constraints imposed by host quality and availability has resulted in trait convergence and divergence at the species, genus and subfamily level

    Scientists' warning on climate change and insects

    No full text
    International audienceClimate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort
    corecore