108 research outputs found

    Antileishmanial polyphenols from Garcinia vieillardii

    Get PDF
    Seven xanthones, the new vieillardiixanthones B and C (1) and (7), pancixanthones A (2), B (3), 1,6-dihydroxyxanthone (6), pyranojacareubin and 5,6-O-dimethyl-2-deprenylrheediaxanthone together with two benzophenones, clusiachromene (4) and 3-geranyl-2,4,6-trihydroxybenzophenone (5) were isolated from the stem bark of the neocaledonian Garcinia vieillardii. 2, 5 and 6 showed a significant antileishmanial activity against the promastigote forms of Leishmania mexicana and L. infantum and against the amastigote forms of L. infantum

    Kelp carbon sink potential decreases with warming due to accelerating decomposition

    Get PDF
    Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale

    A review of carbon offset strategies with seaweed aquaculture – feasibility, current knowledge, and suggestions for future research. The Scottish Association for Marine Science, Oban, UK. Report prepared for the Scottish Government

    Get PDF
    In September 2022, a group of international collaborators gathered from six European countries (hereby referred to as the ‘working group’) to take part in a workshop at the Scottish Association for Marine Science (SAMS), Oban. The workshop was funded as part of Marine Scotland’s Blue Carbon International Policy Challenge (BCIPC). The main aim of the workshop was to produce a document outlining the potential for carbon offset by macroalgal aquaculture. The discussions held at the workshop focused on various concepts and hypotheses surrounding carbon drawdown by seaweed aquaculture and the potential for mitigation of atmospheric CO2. The key points of these discussions have been compiled into a policy brief which aims to highlight important areas for future research, uncertainties and challenges faced by the industry, policy makers and other stakeholders

    Ocean temperature controls kelp decomposition and carbon sink potential

    Get PDF
    Compelling new evidence shows that kelp production contributes an important and underappreciated flux of carbon in the ocean. Major questions remain, however, about the controls on the cycling of this organic carbon in the coastal zone, and their implications for future carbon sequestration. Here we used field experiments distributed across 28° latitude, and the entire range of two dominant kelps in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to environmental factors. Ocean temperature was the strongest control on detritus decomposition in both species, and it was positively related to decomposition. This suggests that decomposition could accelerate with ocean warming under climate change, increasing remineralization and reducing overall kelp carbon sequestration. However, we also demonstrate the potential for high kelp-carbon storage in cooler (northern) regions, which could be targeted by climate mitigation strategies to expand blue carbon sinks

    Climate-driven regime shift of a temperate marine ecosystem.

    Get PDF
    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests

    Kelp carbon sink potential decreases with warming due to accelerating decomposition

    Get PDF
    Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.publishedVersio
    • …
    corecore