185 research outputs found

    Electric field control of multiferroic domains in Ni3_3V2_2O8_8 imaged by X-ray polarization enhanced topography

    Full text link
    The magnetic structure of multiferroic Ni3_3V2_2O8_8 has been investigated using non-resonant X-ray magnetic scattering. Incident circularly polarized X-rays combined with full polarization analysis of the scattered beam is shown to yield high sensitivity to the components of the cycloidal magnetic order, including their relative phases. New information on the magnetic structure in the ferroelectric phase is obtained, where it is found that the magnetic moments on the "cross-tie" sites are quenched relative to those on the "spine" sites. This implies that the onset of ferroelectricity is associated mainly with spine site magnetic order. We also demonstrate that our technique enables the imaging of multiferroic domains through polarization enhanced topography. This approach is used to image the domains as the sample is cycled by an electric field through its hysteresis loop, revealing the gradual switching of domains without nucleation.Comment: 9 pages, 6 figure

    Circularly polarised X-rays as a probe of non-collinear magnetic order in multiferroic TbMnO3

    Get PDF
    Non-resonant X-ray magnetic scattering has been used to study the magnetic structure of multiferroic TbMnO3 in its ferroelectric phase. Circularly polarized X-rays were combined with a full polarization analysis of the scattered beam to reveal important new information on the magnetic structure of this canonical multiferroic. An applied electric field is shown to create a magnetic nearly mono-domain state in which the cylcoidal order on the Mn sublattice rotates either clockwise or counter-clockwise depending on the sign of the field. It is demonstrated how this technique provides sensitivity to the absolute sense of rotation of the Mn moments, and to components of the ordering on the Tb sublattice and phase shifts that earlier neutron diffraction experiments could not resolve.Comment: 4 pages, 3 figure

    Resonant X-Ray Magnetic Scattering from CoO

    Full text link
    We analyze the recent experiment [W. Neubeck {\em et al.}, Phys. Rev. B \vol(60,1999,R9912)] for the resonant x-ray magnetic scattering (RXMS) around the K edge of Co in the antiferromagnet CoO. We propose a mechanism of the RXMS to make the 4p4p states couple to the magnetic order: the intraatomic exchange interaction between the 4p4p and the 3d3d states and the pp-dd mixing to the 3d3d states of neighboring Co atoms. These couplings induce the orbital moment in the 4p4p states and make the scattering tensor antisymmetric. Using a cluster model, we demonstrate that this modification gives rise to a large RXMS intensity in the dipole process, in good agreement with the experiment. We also find that the pre-edge peak is generated by the transition to the 3d3d states in the quadrupole process, with negligible contribution of the dipole process. We also discuss the azimuthal angle dependence of the intensity.Comment: 15 pages, 8 figure

    Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3

    Full text link
    Magneto-electric multiferroics exemplified by TbMnO3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we use an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference charge-magnetic X-ray scattering arises, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a significant contribution to the zero-field ferroelectric moment.Comment: This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science VOL 333, (2011), doi:10.1126/science.120808

    Profile of the U 5f magnetization in U/Fe multilayers

    Full text link
    Recent calculations, concerning the magnetism of uranium in the U/Fe multilayer system have described the spatial dependence of the 5f polarization that might be expected. We have used the x-ray resonant magnetic reflectivity technique to obtain the profile of the induced uranium magnetic moment for selected U/Fe multilayer samples. This study extends the use of x-ray magnetic scattering for induced moment systems to the 5f actinide metals. The spatial dependence of the U magnetization shows that the predominant fraction of the polarization is present at the interfacial boundaries, decaying rapidly towards the center of the uranium layer, in good agreement with predictions.Comment: 7 pages, 6 figure

    Observation Of Orbital Moment In Nio Using Magnetic X-ray Scattering

    Get PDF
    The spin and orbital contribution to the total magnetization have been measured in NiO by exploiting the polarization dependence of nonresonant x-ray magnetic scattering. Although the orbital moment is usually neglected, we observed that the orbital moment actually plays an important role with a contribution of 17% to the total magnetization density. By performing azimuthal scans, it was found that spin and orbital moments are collinear. © 1999 American Institute of Physics.858 II A48474849Muraki, Y., (1998) Phys. Rev. Lett., 81, p. 582Muraki, Y., (1998) Phys. Rev. Lett., 80, p. 1932Blume, M., Gibbs, D., (1988) Phys. Rev. B, 37, p. 1779Shull, C.G., Strauser, W.A., Wollan, F.O., (1951) Phys. Rev., 83, p. 333Baruchel, J., Schlenker, M., Kuusowa, K., Saito, S., (1981) Philos. Mag. B, 43, p. 853Roth, W., (1960) J. Appl. Phys., 31, p. 2000Bergevin, F.D., Brunel, M., (1972) Phys. Lett., 39 A2, p. 141Brunel, M., Bergevin, F.D., (1981) Acta Crystallogr. A, 37, p. 324Blume, M., (1985) J. Appl. Phys., 57, p. 3615Alperin, H.A., (1962) J. Phys. Soc. Jpn., 17 B-III, p. 12Stunault, A., (1998) J. Synchrotron Radiat., 5, p. 1010Fernandez, V., (1998) Phys. Rev. B, 57, p. 7870Blume, M., (1961) Phys. Rev., 124, p. 9

    Magnetic Structure Of Sm2 Ir In8 Determined By X-ray Resonant Magnetic Scattering

    Get PDF
    The magnetic structure of the intermetallic antiferromagnet Sm2 Ir In8 was determined using x-ray resonant magnetic scattering. Below TN =14.2 K, Sm2 Ir In8 has a commensurate antiferromagnetic structure with a propagation vector η = (12,0,0). The Sm magnetic moments lie in the ab plane and are rotated roughly 18° away from the a axis. The magnetic structure of this compound was obtained by measuring the strong dipolar resonant peak whose enhancement was of over 2 orders of magnitude at the L2 edge. At the L3 edge, both quadrupolar and dipolar features were observed in the energy line shape. The magnetic structure and properties of Sm2 Ir In8 are found to be consistent with the general trend already seen for the Nd-, Tb-, and the Ce-based compounds from the Rm Mn In3m+2n family (R=rare earth; M=Rh or Ir; m=1,2; n=0,1), where the crystalline electrical field effects determine the direction of magnetic moments and the TN evolution in the series. The measured Néel temperature for Sm2 Ir In8 is slightly suppressed when compared to the TN of the parent cubic compound Sm In3. © 2007 The American Physical Society.7610Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2000) Phys. Rev. Lett., 84, p. 4986. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4986Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Europhys. Lett., 354-359, p. 4986. , EULEEJ 0295-5075Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P., (2001) J. Phys.: Condens. Matter, 13, p. 337. , JCOMEL 0953-8984 10.1088/0953-8984/13/17/103Thompson, J.D., (2001) J. Magn. Magn. Mater., 226-230, p. 5. , JMMMDC 0304-8853Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2001) Phys. Rev. B, 63, p. 054426. , PRBMDO 0163-1829 10.1103/PhysRevB.63.054426Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., (2000) Phys. Rev. B, 62, p. 12266. , PRBMDO 0163-1829 10.1103/PhysRevB.62.12266Lora-Serrano, R., Giles, C., Granado, E., Garcia, D.J., Miranda, E., Agüero, O., Mendonça Ferreira, L., Pagliuso, P.G., (2006) Phys. Rev. B, 74, p. 214404. , PRBMDO 0163-1829 10.1103/PhysRevB.74.214404Chen, G., Ohara, S., Hedo, M., Uwatoko, Y., Saito, K., Sorai, M., Sakamoto, I., (2002) J. Phys. Soc. Jpn., 71, p. 2836. , JUPSAU 0031-9015 10.1143/JPSJ.71.2836Moshopoulou, E.G., Fisk, Z., Sarrao, J.L., Thompson, J.D., (2001) J. Solid State Chem., 158, p. 25. , JSSCBI 0022-4596 10.1006/jssc.2000.9052Moshopoulou, E.G., Ibberson, R.M., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2006) Acta Crystallogr., Sect. B: Struct. Sci., 62, p. 173. , ASBSDK 0108-7681Buschow, K.H.J., De Wijn, H.W., Van Diepen, A.M., (1969) J. Chem. Phys., 50, p. 137. , JCPSA6 0021-9606 10.1063/1.1670771Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503. , PRBMDO 0163-1829 10.1103/PhysRevB.64.100503Pagliuso, P.G., Movshovich, R., Bianchi, A.D., Nicklas, M., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2002) Physica B, 312-313, p. 129. , PHYBE3 0921-4526Pham, L.D., Park, T., Maquilon, S., Thompson, J.D., Fisk, Z., (2006) Phys. Rev. Lett., 97, p. 056404. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.056404Zapf, V.S., Freeman, E.J., Bauer, E.D., Petricka, J., Sirvent, C., Frederick, N.A., Dickey, R.P., Maple, M.B., (2001) Phys. Rev. B, 65, p. 014506. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014506Park, T., Ronning, F., Yuan, H.Q., Salamon, M.B., Movshovich, R., Sarrao, J.L., Thompson, J.D., (2006) Nature (London), 440, p. 65. , NATUAS 0028-0836 10.1038/nature04571Sidorov, V.A., Nicklas, M., Pagliuso, P.G., Sarrao, J.L., Bang, Y., Balatsky, A.V., Thompson, J.D., (2002) Phys. Rev. Lett., 89, p. 157004. , PRLTAO 0031-9007 10.1103/PhysRevLett.89.157004Bianchi, A., Movshovich, R., Vekhter, I., Pagliuso, P.G., Sarrao, J.L., (2003) Phys. Rev. Lett., 91, p. 257001. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.257001Bauer, E.D., Capan, C., Ronning, F., Movshovich, R., Thompson, J.D., Sarrao, J.L., (2005) Phys. Rev. Lett., 94, p. 047001. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047001Paglione, J., Tanatar, M.A., Hawthorn, D.G., Boaknin, E., Hill, R.W., Ronning, F., Sutherland, M., Canfield, P.C., (2003) Phys. Rev. Lett., 91, p. 246405. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.246405Kumar, R.S., Cornelius, A.L., Sarrao, J.L., (2004) Phys. Rev. B, 70, p. 214526. , PRBMDO 0163-1829 10.1103/PhysRevB.70.214526Oeschler, N., Gegenwart, P., Lang, M., Movshovich, R., Sarrao, J.L., Thompson, J.D., Steglich, F., (2003) Phys. Rev. Lett., 91, p. 076402. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.076402Christianson, A.D., (2004) Phys. Rev. B, 70, p. 134505. , PRBMDO 0163-1829 10.1103/PhysRevB.70.134505Harrison, N., (2004) Phys. Rev. Lett., 93, p. 186405. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.186405Raj, S., (2005) Phys. Rev. B, 71, p. 224516. , PRBMDO 0163-1829 10.1103/PhysRevB.71.224516Hall, D., Palm, E.C., Murphy, T.P., Tozer, S.W., Fisk, Z., Alver, U., Goodrich, R.G., Ebihara, T., (2001) Phys. Rev. B, 64, p. 212508. , PRBMDO 0163-1829 10.1103/PhysRevB.64.212508Hall, D., (2001) Phys. Rev. B, 64, p. 064506. , PRBMDO 0163-1829 10.1103/PhysRevB.64.064506Costa-Quintana, J., López-Aguilar, F., (2003) Phys. Rev. B, 67, p. 132507. , PRBMDO 0163-1829 10.1103/PhysRevB.67.132507Sarrao, J.L., Morales, L.A., Thompson, J.D., Scott, B.L., Stewart, G.R., Wastin, F., Rebizant, J., Lander, G.H., (2002) Nature (London), 420, p. 297. , NATUAS 0028-0836 10.1038/nature01212Bauer, E.D., (2004) Phys. Rev. Lett., 93, p. 147005. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.147005Christianson, A.D., (2005) Phys. Rev. Lett., 95, p. 217002. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.217002Lora-Serrano, R., Mendonça Ferreira, L., Garcia, D.J., Miranda, E., Giles, C., Duque, J.G.S., Granado, E., Pagliuso, P.G., (2006) Physica B, 384, p. 326. , PHYBE3 0921-4526 10.1016/j.physb.2006.06.035Hieu, N.V., (2006) J. Phys. Soc. Jpn., 75, p. 074708. , JUPSAU 0031-9015Malinowski, A., Hundley, M.F., Moreno, N.O., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., (2003) Phys. Rev. B, 68, p. 184419. , PRBMDO 0163-1829 10.1103/PhysRevB.68.184419Correa, V.F., Tung, L., Hollen, S.M., Pagliuso, P.G., Moreno, N.O., Lashley, J.C., Sarrao, J.L., Lacerda, A.H., (2004) Phys. Rev. B, 69, p. 174424. , PRBMDO 0163-1829 10.1103/PhysRevB.69.174424Granado, E., Pagliuso, P.G., Giles, C., Lora-Serrano, R., Yokaichiya, F., Sarrao, J.L., (2004) Phys. Rev. B, 69, p. 144411. , PRBMDO 0163-1829 10.1103/PhysRevB.69.144411Pagliuso, P.G., (2006) J. Appl. Phys., 99, pp. 08P703. , JAPIAU 0021-8979 10.1063/1.2176109Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2000) Phys. Rev. B, 62, p. 14621. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R14621Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2001) Phys. Rev. B, 63, p. 219901. , PRBMDO 0163-1829 10.1103/PhysRevB.63.219901Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., (2001) Phys. Rev. B, 64, p. 020401. , PRBMDO 0163-1829 10.1103/PhysRevB.64.020401Chang, S., Pagliuso, P.G., Bao, W., Gardner, J.S., Swainson, I.P., Sarrao, J.L., Nakotte, H., (2002) Phys. Rev. B, 66, p. 132417. , PRBMDO 0163-1829 10.1103/PhysRevB.66.132417Granado, E., Uchoa, B., Malachias, A., Lora-Serrano, R., Pagliuso, P.G., Westfahl Jr., H., (2006) Phys. Rev. B, 74, p. 214428. , PRBMDO 0163-1829 10.1103/PhysRevB.74.214428Kasaya, M., Liu, B., Sera, M., Kasuya, T., Endoh, D., Goto, T., Fujimura, F., (1985) J. Magn. Magn. Mater., 52, p. 289. , JMMMDC 0304-8853 10.1016/0304-8853(85)90282-3Endoh, D., Goto, T., Tamaki, A., Liu, B., Kasaya, M., Fujimura, T., Kasuya, T., (1989) J. Phys. Soc. Jpn., 58, p. 940. , JUPSAU 0031-9015Kletowski, Z., (1998) J. Magn. Magn. Mater., 186, p. 7. , JMMMDC 0304-8853Stunault, A., Dumesnil, K., Dufour, C., Vettier, C., Bernhoeft, N., (2002) Phys. Rev. B, 65, p. 064436. , PRBMDO 0163-1829 10.1103/PhysRevB.65.064436Fisk, Z., Remeika, J.P., (1989) Handbook on the Physics and Chemistry of Rare Earths, 12, p. 53. , edited by J. K. A. Geschneider and E. L. Eyring (Elsevier, Amsterdam/ North-Holland, AmsterdamPaolasini, L., (2007) J. Synchrotron Radiat., 14, p. 301. , JSYRES 0909-0495Hill, J.P., McMorrow, D.F., (1996) Acta Crystallogr., Sect. A: Found. Crystallogr., 52, p. 236. , ACACEQ 0108-7673 10.1107/S0108767395012670Zheludev, A., Hill, J.P., Buttrey, D.J., (1996) Phys. Rev. B, 54, p. 7216. , PRBMDO 0163-1829 10.1103/PhysRevB.54.7216Hill, J.P., Vigliante, A., Gibbs, D., Peng, J.L., Greene, R.L., (1995) Phys. Rev. B, 52, p. 6575. , PRBMDO 0163-1829 10.1103/PhysRevB.52.6575Detlefs, C., Islam, A.H.M.Z., Goldman, A.I., Stassis, C., Canfield, P.C., Hill, J.P., Gibbs, D., (1997) Phys. Rev. B, 55, p. 680. , PRBMDO 0163-1829 10.1103/PhysRevB.55.R680Hannon, J.P., Trammell, G.T., Blume, M., Gibbs, D., (1988) Phys. Rev. Lett., 61, p. 1245. , PRLTAO 0031-9007 10.1103/PhysRevLett.61.1245Blume, M., Gibbs, D., (1988) Phys. Rev. B, 37, p. 1779. , PRBMDO 0163-1829 10.1103/PhysRevB.37.1779Kubo, K., Hotta, T., (2006) J. Phys. Soc. Jpn., 75, p. 083702. , JUPSAU 0031-9015 10.1143/JPSJ.75.083702Tsuchida, T., Wallace, W.E., (1965) J. Chem. Phys., 43, p. 3811. , JCPSA6 0021-9606 10.1063/1.169656

    Circularly Polarized X Rays as a Probe of Noncollinear Magnetic Order in Multiferroic TbMnO3 (vol 102, 237205, 2009)

    Get PDF
    Erratum: Circularly Polarized X Rays as a Probe of Noncollinear Magnetic Order in Multiferroic TbMnO3 [Phys. Rev. Lett. 102, 237205 (2009)
    • …
    corecore