23 research outputs found

    Limits on Pop III star formation with the most iron-poor stars

    Get PDF
    We study the impact of star-forming mini-haloes, and the Initial Mass Function (IMF) of Population III (Pop III) stars, on the Galactic halo Metallicity Distribution Function (MDF) and on the properties of C-enhanced and C-normal stars at [Fe/H]<-3. For our investigation we use a data-constrained merger tree model for the Milky Way formation, which has been improved to self-consistently describe the physical processes regulating star-formation in mini-haloes, including the poor sampling of the Pop III IMF. We find that only when star-forming mini-haloes are included the low-Fe tail of the MDF is correctly reproduced, showing a plateau that is built up by C-enhanced metal-poor (CEMP) stars imprinted by primordial faint supernovae. The incomplete sampling of the Pop III IMF in inefficiently star-forming mini-haloes (< 10−310^{-3} M⊙M_\odot/yr) strongly limits the formation of Pair Instability Supernovae (PISNe), with progenitor masses mpopIIIm_{\rm popIII}=[140-260] M⊙M_\odot, even when a flat Pop III IMF is assumed. Second-generation stars formed in environments polluted at >50% level by PISNe are thus extremely rare, corresponding to ≈\approx 0.25% of the total stellar population at [Fe/H]<-2, which is consistent with recent observations. The low-Fe tail of the MDF strongly depends on the Pop III IMF shape and mass range. Given the current statistics, we find that a flat Pop III IMF model with mpopIIIm_{\rm popIII}=[10-300] M⊙M_\odot is disfavoured by observations. We present testable predictions for Pop III stars extending down to lower masses, with mpopIIIm_{\rm popIII}=[0.1-300] M⊙M_\odot.Comment: 15 pages, 11 figures. Accepted for publication in MNRAS. The only change is the correction of a mistake in the list of author

    Galaxy formation with radiative and chemical feedback

    Get PDF
    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We discuss the merits and limitations of the first release of GAMESH, also opening new directions to a full implementation of feedback processes in galaxy formation models by combining semi-analytic and numerical methods.Comment: This version has coloured figures not present in the printed version. Submitted to MNRAS, minor revision

    Decoding the stellar fossils of the dusty Milky Way progenitors

    No full text
    We investigate the metallicity distribution function (MDF) in the Galactic halo and the relative fraction of carbon-normal and carbon-rich stars. To this aim, we use an improved version of the semi-analytical code GAlaxy MErger Tree and Evolution (GAMETE), that reconstructs the hierarchical merger tree of the Milky Way (MW), following the star formation history and the metal and dust evolution in individual progenitors. The predicted scaling relations between the dust, metal and gas masses for MW progenitors show a good agreement with observational data of local galaxies and of gamma-ray burst (GRB) host galaxies at 0.1 140 M&sun;, into the Pair-Instability SN progenitor mass range. The relative contribution of C-normal and C-enhanced stars to the MDF and its dependence on [Fe/H] points to a scenario where the Pop III/II transition is driven by dust cooling, and the first low-mass stars form when the dust-to-gas ratio in their parent clouds exceeds a critical value of {\cal D}_crit = 4.4 × 10^{-9}. Other transition criteria do not predict any C-normal stars below [Fe/H] < -4, at odds with observations

    Sumário do Vol. 6, nº2 (2010)

    Get PDF
    We investigate the metallicity distribution function (MDF) of the Galactic halo and the relative fraction of Carbon-normal and Carbon-rich stars using the semi-analytical code GAMETE. The code reconstructs the hierarchical merger tree of the Milky Way (MW) and follows the star formation history and the metal evolution in individual progenitors, including for the first time the formation and evolution of dust. We predict scaling relations between the dust, metal and gas masses for MW progenitors and compare them with observational data of galaxies at

    The history of the dark and luminous side of Milky Way-like progenitors

    Get PDF
    International audienceHere we investigate the evolution of a Milky Way (MW)-like galaxy with the aim of predicting the properties of its progenitors all the way from z ∼ 20 to z = 0. We apply gamesh to a high-resolution N-body simulation following the formation of a MW-type halo and we investigate its properties at z ∼ 0 and its progenitors in 0  6 the contribution of star-forming minihaloes is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of minihaloes with old stellar populations, possibly Population III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment
    corecore