23 research outputs found

    Hybrid integrated mode-locked laser diodes with a silicon nitride extended cavity

    Full text link
    Integrated semiconductor mode-locked lasers have shown promise in many applications and are readily fabricated using generic InP photonic integration platforms. However, the passive waveguides offered in such platforms have relatively high linear and nonlinear losses that limit the performance of these lasers. By extending such lasers with, for example, an external cavity the performance can be increased considerably. In this paper, we demonstrate for the first time that a high-performance mode-locked laser can be achieved with a butt-coupling integration technique using chip scale silicon nitride waveguides. A platform-independent SiN/SU8 coupler design is used to couple between the silicon nitride external cavity and the III/V active chip. Mode-locked lasers at 2.18 GHz and 15.5 GHz repetition rates are demonstrated with Lorentzian RF linewidths several orders of magnitude smaller than what has been demonstrated on monolithic InP platforms. The RF linewidth was 31 Hz for the 2.18 GHz laser.Comment: Submitted to Optics Expres

    Micro-transfer printing of lithium niobate on silicon nitride

    Get PDF
    Successful micro-transfer printing of lithium niobate on a silicon nitride platform is demonstrated. A proof of concept electro-optical modulator is fabricated using this hybrid integration method which shows a half-wave voltage-length product VπLπ=5.5 Vcm and insertion losses of 7 dB

    Ultra-dense III-V-on-silicon nitride frequency comb laser

    Get PDF
    A heterogeneously integrated III-V-on-silicon nitride mode-locked laser is demonstrated. The device is fabricated by microtransfer printing an InP/InAlGaAs-based multiple-quantum-well coupon. A dense comb with a 755 MHz repetition rate, a 1 Hz ASE limited RF linewidth and a 200 kHz optical linewidth is achieved

    Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing

    Get PDF
    The development of ultralow-loss silicon-nitride-based waveguide platforms has enabled the realization of integrated optical filters with unprecedented performance. Such passive circuits, when combined with phase modulators and low-noise lasers, have the potential to improve the current state of the art of the most critical components in coherent communications, beam steering, and microwave photonics applications. However, the large refractive index difference between silicon nitride and common III-V gain materials in the telecom wavelength range hampers the integration of electrically pumped III-V semiconductor lasers on a silicon nitride waveguide chip. Here, we present an approach to overcome this refractive index mismatch by using an intermediate layer of hydrogenated amorphous silicon, followed by the microtransfer printing of a prefabricated III-V semiconductor optical amplifier. Following this approach, we demonstrate a heterogeneously integrated semiconductor optical amplifier on a silicon nitride waveguide circuit with up to 14 dB gain and a saturation power of 8 mW. We further demonstrate a heterogeneously integrated ring laser on a silicon nitride circuit operating around 1550 nm. This heterogeneous integration approach would not be limited to silicon-nitride-based platforms: it can be used advantageously for any waveguide platform with low-refractive-index waveguide materials such as lithium niobate

    III/V-on-lithium niobate amplifiers and lasers

    Get PDF
    We demonstrate electrically pumped, heterogeneously integrated lasers on thin-film lithium niobate, featuring electro-optic wavelength tunability. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Heterogeneous integration in silicon photonics through micro-transfer-printing

    Get PDF
    Micro-transfer-printing enables the intimate integration of a wide range of opto-electronic micro-components on a silicon photonics platform. This technique allows for wafer-scale integration in a massively parallel manner with high alignment accuracy, high throughput and high yield, therefore leading to a cost reduction of complex photonic integrated circuits

    III-V-on-Si photonic integrated circuits realized using micro-transfer-printing

    Get PDF
    Silicon photonics (SiPh) enables compact photonic integrated circuits (PICs), showing superior performance for a wide variety of applications. Various optical functions have been demonstrated on this platform that allows for complex and powerful PICs. Nevertheless, laser source integration technologies are not yet as mature, hampering the further cost reduction of the eventual Si photonic systems-on-chip and impeding the expansion of this platform to a broader range of applications. Here, we discuss a promising technology, micro-transfer-printing (μTP), for the realization of III-V-on-Si PICs. By employing a polydimethylsiloxane elastomeric stamp, the integration of III-V devices can be realized in a massively parallel manner on a wafer without substantial modifications to the SiPh process flow, leading to a significant cost reduction of the resulting III-V-on-Si PICs. This paper summarizes some of the recent developments in the use of μTP technology for realizing the integration of III-V photodiodes and lasers on Si PICs

    Micro-transfer-printing for III-V/Si PICs

    Get PDF
    Micro-transfer-printing (µTP) enables the intimate integration of a variety of III-V opto-electronic components on silicon photonic integrated circuits (Si PICs). It allows for the scalable manufacturing of complex III-V/Si PICs at low cost

    Integración de ITO con silicio para desarrollar funcionalidades electro-ópticas

    Full text link
    In a ¿rst attempt to use ITO as a heater for thermo-optic switching, a sample was fabricated with an ITO layer on top of a silicon waveguide with an oxide layer in between. Upon heating the ITO, it was noted that the optical response of an MZI shifted in the direction opposite to what would be expected from the thermo-optic effect in silicon. This counterintuitive result is the incentive of this Master thesis topic. In the ¿rst part, the Drude model is used to predict the optical behaviour of the ITO. This model is then used to simulate simple waveguide structures for absorptive and refractive modulation, under the assumption of tunability of the bulk carrier density. Afterwards, the fabrication procedure is documented in suf¿cient detail to understand some of the mechanisms in¿uencing the ¿nal structure¿s characteristics. The in¿uence of oxygen during heat treatments on ITO¿s resistivity is discussed. Next, some ways to achieve bulk carrier density tuning for ef¿cient modulation are proposed. These last two parts are almost entirely based on literature study. Next, optical switching is discussed and the measurement results are shown and discussed. In the time that was available, no clear causes were identi¿ed that explain the obtained results. After heating the structure for several hours, the response of the structure was found to be one order of magnitude smaller than before. The structure appears to have converged towards a more stable con¿guration. This text is an attempt to give a broad introduction to the topic, pointing out different parts that could be investigated separately in the future, dividing the problem in pieces.En un primer intento de utilizar ITO como calentador para conmutación de termo-óptica, una muestra fue fabricada con una capa de ITO encima de una guía de ondas de silicio con una capa de óxido en el medio. Al calentar el ITO, se observó que la respuesta óptica del MZI se en la dirección opuesta a lo que cabría esperar del efecto termo-óptico en silicio. Este resultado contraintuitivo es la motivación del tema de este Trabajo de Fin de Master. En la primera parte, se utiliza el modelo de Drude para predecir el comportamiento óptico del ITO. Este modelo se utiliza luego para simular las estructuras de guía de ondas simples para modulación de absorción y de refracción, bajo el supuesto de capacidad de ajuste de la densidad de portadores a granel. Posteriormente, el procedimiento de fabricación se documenta en detalle suficiente para entender algunos de los mecanismos que influyen en las características de la estructura final. Se habla acerca de la influencia del oxígeno durante los tratamientos térmicos relativos a la resistencia del ITO. A continuación, se proponen algunas maneras de lograr el ajuste de la densidad de portadores a granel para la modulación eficiente. Estas dos últimas partes se basan casi exclusivamente en el estudio de la literatura. A continuación, se discute la conmutación óptica, y los resultados de la medición se muestran y discuten. En el momento en que estaba disponible, no se identificaron causas claras que explicaran los resultados obtenidos. Después de calentar la estructura durante varias horas, se encontró que la respuesta de la estructura era un orden de magnitud más pequeño que antes. La estructura parece haber convergido hacia una configuración de mayor estabilidad. Este texto es un intento de dar una amplia introducción al tema, señalando las diferentes partes que podrían investigarse por separado en el futuro, dividiendo el problema en partes.Camiel, ODB. (2016). Integración de ITO con silicio para desarrollar funcionalidades electro-ópticas. http://hdl.handle.net/10251/92561TFG
    corecore