3,010 research outputs found

    Multiwavelength Observations of Gamma-ray Binary Candidates

    Full text link
    A rare group of high mass X-ray binaries (HMXBs) are known that also exhibit MeV, GeV, and/or TeV emission ("gamma-ray binaries"). Expanding the sample of gamma-ray binaries and identifying unknown Fermi sources are currently of great interest to the community. Based upon their positional coincidence with the unidentified Fermi sources 1FGL J1127.7-6244c and 1FGL J1808.5-1954c, the Be stars HD 99771 and HD 165783 have been proposed as gamma-ray binary candidates. During Fermi Cycle 4, we have performed multiwavelength observations of these sources using XMM-Newton and the CTIO 1.5m telescope. We do not confirm high energy emission from the Be stars. Here we examine other X-ray sources in the field of view that are potential counterparts to the Fermi sources.Comment: 2012 Fermi Symposium proceedings - eConf C12102

    A radio-map of the colliding winds in the very massive binary system HD 93129A

    Full text link
    Radio observations are an effective tool to discover particle acceleration regions in colliding-wind binaries, through detection of synchrotron radiation; these regions are natural laboratories for the study of relativistic particles. Wind-collision region (WCR) models can reproduce the radio continuum spectra of massive binaries that contain both thermal and non-thermal radio emission; however, key constraints for models come from high-resolution imaging. Only five WCRs have been resolved to date at radio frequencies at milliarcsec (mas) angular scales. The source HD 93129A, prototype of the very few known O2 I stars, is a promising target for study: recently, a second massive, early-type star about 50 mas away was discovered, and a non-thermal radio source detected in the region. Preliminary long-baseline array data suggest that a significant fraction of the radio emission from the system comes from a putative WCR. We sought evidence that HD 93129A is a massive binary system with colliding stellar winds that produce non-thermal radiation, through spatially resolved images of the radio emitting regions. We completed observations with the Australian Long Baseline Array (LBA) to resolve the system at mas angular resolutions and reduced archival Australia Telescope Compact Array (ATCA) data to derive the total radio emission. We also compiled optical astrometric data of the system in a homogeneous way. We reduced historical Hubble Space Telescope data and obtained absolute and relative astrometry with milliarcsec accuracy. The astrometric analysis leads us to conclude that the two stars in HD 93129A form a gravitationally bound system. The LBA data reveal an extended arc-shaped non-thermal source between the two stars, indicative of a WCR. The wind momentum-rate ratio of the two stellar winds is estimated. The ATCA data show a point source with a change in flux level ...Comment: Accepted in Astronomy and Astrophysic

    What Determines the Depth of BALs? Keck HIRES Observations of BALQSO 1603+300

    Full text link
    We find that the depth and shape of the broad absorption lines (BALs) in BALQSO 1603+3002 are determined largely by the fraction of the emitting source which is covered by the BAL flow. In addition, the observed depth of the BALs is poorly correlated with their real optical depth. The implication of this result is that abundance studies based on direct extraction of column densities from the depth of the absorption troughs are unreliable. Our conclusion is based on analysis of unblended absorption features of two lines from the same ion (in this case the Si IV doublet), which allows unambiguous separation of covering factor and optical depth effects. The complex morphology of the covering factor as a function of velocity suggests that the BALs are produced by several physically separated outflows. The covering factor is ion dependent in both depth and velocity width. We also find evidence that in BALQSO 1603+3002 the flow does not cover the broad emission line region.Comment: 13 pages, 2 figures, accepted for publication in Ap

    On the multiplicity of the O-star Cyg OB2 #8A and its contribution to the gamma-ray source 3EG J2033+4118

    Full text link
    We present the results of an intensive spectroscopic campaign in the optical waveband revealing that Cyg OB2 #8A is an O6 + O5.5 binary system with a period of about 21.9 d. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal radio emitter. We discuss the binarity of this star in the framework of a campaign devoted to the study of non-thermal emitters, from the radio waveband to gamma-rays. In this context, we attribute the non-thermal radio emission from this star to a population of relativistic electrons, accelerated by the shock of the wind-wind collision. These relativistic electrons could also be responsible for a putative gamma-ray emission through inverse Compton scattering of photospheric UV photons, thus contributing to the yet unidentified EGRET source 3EG J2033+4118.Comment: 8 pages, 4 figures, conference on "The Multiwavelength Approach to Gamma-Ray Sources", to appear in Ap&S

    High-harmonic generation from a confined atom

    Full text link
    The order of high harmonics emitted by an atom in an intense laser field is limited by the so-called cutoff frequency. Solving the time-dependent Schr\"odinger equation, we show that this frequency can be increased considerably by a parabolic confining potential, if the confinement parameters are suitably chosen. Furthermore, due to confinement, the radiation intensity remains high throughout the extended emission range. All features observed can be explained with classical arguments.Comment: 4 pages(tex files), 4 figures(eps files); added references and comment

    The latest developments on Of?p stars

    Get PDF
    In recent years several in-depth investigations of the three prototypical Of?p stars were undertaken, revealing their peculiar properties. To clarify some of the remaining questions, we have continued our monitoring of the prototypical Of?p trio. HD 108 has now reached its quiescent, minimum-emission state, for the first time in 50-60yrs, while new echelle spectra of HD 148937 confirm the presence in several H and He lines of the 7d variations detected previously only in the Hα line. A new XMM observation of HD 191612 clearly shows that its X-ray emission is not modulated by the orbital period of 1542d, but the high-energy variations are rather compatible with the 538d period of the optical changes - it is thus not of colliding-wind origin but linked to the phenomena responsible for the spectral/photometric variations, though our current MHD simulations remain at odds with the observational propertie

    Foreground Predictions for the Cosmic Microwave Background Power Spectrum from Measurements of Faint Inverted Radio Sources at 5 GHz

    Full text link
    We present measurements of a population of matched radio sources at 1.4 and 5 GHz down to a flux limit of 1.5 mJy in 7 sq. degs. of the NOAO Deep Field South. We find a significant fraction of sources with inverted spectral indices that all have 1.4 GHz fluxes less than 10 mJy, and are therefore too faint to have been detected and included in previous radio source count models that are matched at multiple frequencies. Combined with the matched source population at 1.4 and 5 GHz in 1 sq. deg. in the ATESP survey, we update models for the 5 GHz differential number counts and distributions of spectral indices in 5 GHz flux bins that can be used to estimate the unresolved point source contribution to the cosmic microwave background temperature anisotropies. We find a shallower logarithmic slope in the 5 GHz differential counts than in previously published models for fluxes < 100 mJy as well as larger fractions of inverted spectral indices at these fluxes. Because the Planck flux limit for resolved sources is larger than 100 mJy in all channels, our modified number counts yield at most a 10% change in the predicted Poisson contribution to the Planck temperature power spectrum. For a flux cut of 5 mJy with the South Pole Telescope and a flux cut of 20 mJy with the Atacama Cosmology Telescope we predict a ~30% and ~10% increase, respectively, in the radio source Poisson power in the lowest frequency channels of each experiment relative to that predicted by previous models.Comment: 14 pages, 9 figures, includes ApJ proof correction

    Supersymmetry Changing Bubbles in String Theory

    Get PDF
    We give examples of string compactifications to 4d Minkowski space with different amounts of supersymmetry that can be connected by spherical domain walls. The tension of these domain walls is tunably lower than the 4d Planck scale. The ``stringy'' description of these walls is known in terms of certain configurations of wrapped Dirichlet and NS branes. This construction allows us to connect a variety of vacua with 4d N=4,3,2,1 supersymmetry.Comment: 11 pages, harvmac, no figures, reference added, minor correction

    High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum

    Get PDF
    Background: Extremolytes enable microbes to withstand even the most extreme conditions in nature. Due to their unique protective properties, the small organic molecules, more and more, become high-value active ingredients for the cosmetics and the pharmaceutical industries. While ectoine, the industrial extremolyte fagship, has been successfully commercialized before, an economically viable route to its highly interesting derivative 5-hydroxyectoine (hydroxyectoine) is not existing. Results: Here, we demonstrate high-level hydroxyectoine production, using metabolically engineered strains of C. glutamicum that express a codon-optimized, heterologous ectD gene, encoding for ectoine hydroxylase, to convert supplemented ectoine in the presence of sucrose as growth substrate into the desired derivative. Fourteen out of sixteen codon-optimized ectD variants from phylogenetically diverse bacterial and archaeal donors enabled hydroxyectoine production, showing the strategy to work almost regardless of the origin of the gene. The genes from Pseudomonas stutzeri (PST) and Mycobacterium smegmatis (MSM) worked best and enabled hydroxyectoine production up to 97% yield. Metabolic analyses revealed high enrichment of the ectoines inside the cells, which, inter alia, reduced the synthesis of other compatible solutes, including proline and trehalose. After further optimization, C. glutamicum Ptuf ectDPST achieved a titre of 74 g L−1 hydroxyectoine at 70% selectivity within 12 h, using a simple batch process. In a two-step procedure, hydroxyectoine production from ectoine, previously synthesized fermentatively with C. glutamicum ectABCopt, was successfully achieved without intermediate purifcation. Conclusions: C. glutamicum is a well-known and industrially proven host, allowing the synthesis of commercial products with granted GRAS status, a great beneft for a safe production of hydroxyectoine as active ingredient for cosmetic and pharmaceutical applications. Because ectoine is already available at commercial scale, its use as precursor appears straightforward. In the future, two-step processes might provide hydroxyectoine de novo from sugar
    corecore