4 research outputs found

    Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells

    Get PDF
    The C-type lectin dendritic cell (DC)–specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm. Biochemical experiments and confocal microscopy indicate that DC-SIGN microdomains reside within lipid rafts. Finally, we show that the organization of DC-SIGN in microdomains on the plasma membrane is important for binding and internalization of virus particles, suggesting that these multimolecular assemblies of DC-SIGN act as a docking site for pathogens like HIV-1 to invade the host

    Near-Field Fluorescence Microscopy : An Optical Nanotool to Study Protein Organization at the Cell Membrane

    Get PDF
    The ability to study the structure and function of cell membranes and membrane components is fundamental to understanding cellular processes. This requires the use of methods capable of resolving structures with nanometer-scale resolution in intact or living cells. Although fluorescence microscopy has proven to be an extremely versatile tool in cell biology, its diffraction-limited resolution prevents the investigation of membrane compartmentalization at the nanometer scale. Near-field scanning optical microscopy (NSOM) is a relatively unexplored technique that combines both enhanced spatial resolution of probing microscopes and simultaneous measurement of topographic and optical signals. Because of the very small nearfield\ud excitation volume, background fluorescence from the cytoplasm is effectively reduced, enabling the visualization of nano-scale domains on the cell membrane with single molecule detection sensitivity at physiologically relevant packing densities. In this article we discuss technological aspects concerning the implementation of NSOM for cell membrane studies and illustrate its unique advantages in terms of spatial resolution, background suppression, sensitivity, and surface specificity for the study of protein clustering at the cell membrane. Furthermore, we demonstrate reliable operation under physiological conditions, without compromising resolution or sensitivity, opening the road toward truly live cell imaging with unprecedented detail\ud and accuracy

    Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells\ud

    Get PDF
    Interleukin 2 and interleukin 15 (IL2 and IL15, respectively) provide quite distinct contributions to T-cell-mediated immunity, despite having similar receptor composition and signaling machinery. As most of the proposed mechanisms underlying this apparent paradox attribute key significance to the individual -chains of IL2 and IL15 receptors, we investigated the spatial organization of the receptors IL2R and IL15R at the nanometer scale expressed on a human CD4+ leukemia T cell line using single-molecule-sensitive near-field scanning optical microscopy (NSOM). In agreement with previous findings, we here confirm clustering of IL2R and IL15R at the submicron scale. In addition to clustering, our single-molecule data reveal that a non-negligible percentage of the receptors are organized as monomers. Only a minor fraction of IL2R molecules reside outside the clustered domains, whereas 30% of IL15R molecules organize as monomers or small clusters, excluded from the main domain regions. Interestingly, we also found that the packing densities per unit area of both IL2R and IL15R domains remained constant, suggesting a `building block' type of assembly involving repeated structures and composition. Finally, dual-color NSOM demonstrated co-clustering of the two -chains. Our results should aid understanding the action of the IL2R-IL15R system in T cell function and also might contribute to the more rationale design of IL2R- or IL15R-targeted immunotherapy agents for treating human leukemia. \u
    corecore