4,898 research outputs found
Rs964184 (APOA5-A4-C3-A1) Is Related to Elevated Plasma Triglyceride Levels, but Not to an Increased Risk for Vascular Events in Patients with Clinically Manifest Vascular Disease
Background: Single nucleotide polymorphisms in the APOA5-A4-C3-A1 gene complex are associated with elevated plasma triglycerides and elevated vascular risk in healthy populations. In patients with clinically manifest vascular disease, hypertriglyceridemia and metabolic syndrome are frequently present, but the contribution of these single nucleotide polymorphisms to plasma triglycerides, effect modification by obesity and risk of recurrent vascular events is unknown in these patients. Methods: Prospective cohort study of 5547 patients with vascular disease. Rs964184 (APOA5-A4-C3-A1 gene complex) was genotyped, and we evaluated the relation with plasma lipid levels, presence of metabolic syndrome and the risk for new vascular events. Results: The minor allele of rs964184 was strongly associated with log plasma triglycerides (β 0.12; 95%CI 0.10-0.15, p = 1.1*10−19), and was also associated with 0.03 mmol/L lower high-density lipoprotein-cholesterol (95%CI 0.01–0.04), and 0.14 mmol/L higher non-high-density lipoprotein-cholesterol (95%CI 0.09–0.20). The minor allele frequency increased from 10.9% in patients with plasma triglycerides 27 kg/m2, p for interaction = 0.02). The prevalence of the metabolic syndrome increased from 52% for patients with two copies of the major allele to 62% for patients with two copies of the minor allele (p = 0.01). Rs964184 was not related with recurrent vascular events (HR 0.99; 95%CI 0.86–1.13). Conclusion: The single nucleotide polymorphism rs964184 (APOA5-A4-C3-A1) is associated with elevated plasma triglycerides concentrations in patients with clinically manifest vascular disease. In carriers of one minor allele, the effect on plasma triglycerides was modified by body mass index. There is no relation between rs964184 and recurrent vascular events in these patients
High-resolution spectroscopy of the R Coronae Borealis and Other Hydrogen Deficient Stars
High-resolution spectroscopy is a very important tool for studying stellar
physics, perhaps, particularly so for such enigmatic objects like the R Coronae
Borealis and related Hydrogen deficient stars that produce carbon dust in
addition to their peculiar abundances.
Examples of how high-resolution spectroscopy is used in the study of these
stars to address the two major puzzles are presented: (i) How are such rare
H-deficient stars created? and (ii) How and where are the obscuring soot clouds
produced around the R Coronae Borealis stars?Comment: 16 pages, 9 figures, Astrophysics and Space Science Proceedings,
Springer-Verlag, Berlin, 201
Mesoscopic proximity effect in double barrier Superconductor/Normal Metal junctions
We report transport measurements down to T=60mK of SININ and SNIN structures
in the diffusive limit. We fabricated Al-AlOx/Cu/AlOx/Cu (SININ) and
Al/Cu/AlOx/Cu (SNIN) vertical junctions. For the first time, a zero bias
anomaly was observed in a metallic SININ structure. We attribute this peak of
conductance to coherent multi-reflections of electrons between the two tunnel
barriers. This conductance maximum is quantitatively fitted by the relevant
theory of mesoscopic SININ structures. When the barrier at the SN interface is
removed (SNIN structure), we observe a peak of conductance at finite voltage
accompagnied by an excess of sub-gap conductance.Comment: 4 pages, 4 figures, editorially approved for publication in Phys.
Rev. B Rapid Com
Nonlinearity in NS transport: scattering matrix approach
A general formula for the current through a disordered
normal--superconducting junction is derived, which is valid at finite
temperature and includes the full voltage dependence. The result depends on a
multichannel scattering matrix, which describes elastic scattering in the
normal region, and accounts for the Andreev scattering at the NS interface. The
symmetry of the current with respect to sign reversal in the subgap regime is
discussed. The Andreev approximation is used to derive a spectral conductance
formula, which applies to voltages both below and above the gap. In a case
study the spectral conductance formula is applied to the problem of an NINIS
double barrier junction.Comment: 26 pages, 4 Postscript figures, Latex, to be published in Phys. Rev.
Метафорична картина світу та її місце у системі світів
Статья посвящается исследованию понятия метафорической картины мира, целесообразность выделения которой автор объясняет тем, что по аналогии с языковой и концептуальной картинами мира, термин "метафорическая
картина мира" содержит информацию о сложной структуре многосмысловых
значений, которые в силу своей метафорической природе гармонически объединяются.У статті йдеться про поняття метафоричної картини світу, доцільність
виділення якої авторка пояснює тим, що за аналогією до мовної й концептуальної картин світу, термін "метафорична картина світу" вміщує інформацію про
складну структуру багатосмислових значень, що завдяки своїй метафоричній
природі гармонійно поєднуються.The article deals with the notion of metaphorical world picture connected with the
general principle of conceptualization. The term "metaphorical world picture" consists
of a complex structure of various meanings harmonically combined due to their
metaphorical nature
Discrete approaches to quantum gravity in four dimensions
The construction of a consistent theory of quantum gravity is a problem in
theoretical physics that has so far defied all attempts at resolution. One
ansatz to try to obtain a non-trivial quantum theory proceeds via a
discretization of space-time and the Einstein action. I review here three major
areas of research: gauge-theoretic approaches, both in a path-integral and a
Hamiltonian formulation, quantum Regge calculus, and the method of dynamical
triangulations, confining attention to work that is strictly four-dimensional,
strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the
author welcomes any comments and suggestion
Frame Dependence of Spin-One Angular Conditions in Light Front Dynamics
We elaborate the frame dependence of the angular conditions for spin-1 form
factors. An extra angular condition is found in addition to the usual angular
condition relating the four helicity amplitudes. Investigating the
frame-dependence of the angular conditions, we find that the extra angular
condition is in general as complicated as the usual one, although it becomes
very simple in the frame involving only two helicity amplitudes. It
is confirmed that the angular conditions are identical in frames that are
connected by kinematical transformations. The high behaviors of the
physical form factors and the limiting behaviors in special reference frames
are also discussed.Comment: 29 pages RevTeX. submitted to Phys. Rev.
The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics
A longstanding limitation of first-principles calculations of substitutional
alloy phase diagrams is the difficulty to account for lattice vibrations. A
survey of the theoretical and experimental literature seeking to quantify the
impact of lattice vibrations on phase stability indicates that this effect can
be substantial. Typical vibrational entropy differences between phases are of
the order of 0.1 to 0.2 k_B/atom, which is comparable to the typical values of
configurational entropy differences in binary alloys (at most 0.693 k_B/atom).
This paper describes the basic formalism underlying ab initio phase diagram
calculations, along with the generalization required to account for lattice
vibrations. We overview the various techniques allowing the theoretical
calculation and the experimental determination of phonon dispersion curves and
related thermodynamic quantities, such as vibrational entropy or free energy. A
clear picture of the origin of vibrational entropy differences between phases
in an alloy system is presented that goes beyond the traditional bond counting
and volume change arguments. Vibrational entropy change can be attributed to
the changes in chemical bond stiffness associated with the changes in bond
length that take place during a phase transformation. This so-called ``bond
stiffness vs. bond length'' interpretation both summarizes the key phenomenon
driving vibrational entropy changes and provides a practical tool to model
them.Comment: Submitted to Reviews of Modern Physics 44 pages, 6 figure
Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results
We review some recent attempts to extract information about the nature of
quantum gravity, with and without matter, by quantum field theoretical methods.
More specifically, we work within a covariant lattice approach where the
individual space-time geometries are constructed from fundamental simplicial
building blocks, and the path integral over geometries is approximated by
summing over a class of piece-wise linear geometries. This method of
``dynamical triangulations'' is very powerful in 2d, where the regularized
theory can be solved explicitly, and gives us more insights into the quantum
nature of 2d space-time than continuum methods are presently able to provide.
It also allows us to establish an explicit relation between the Lorentzian- and
Euclidean-signature quantum theories. Analogous regularized gravitational
models can be set up in higher dimensions. Some analytic tools exist to study
their state sums, but, unlike in 2d, no complete analytic solutions have yet
been constructed. However, a great advantage of our approach is the fact that
it is well-suited for numerical simulations. In the second part of this review
we describe the relevant Monte Carlo techniques, as well as some of the
physical results that have been obtained from the simulations of Euclidean
gravity. We also explain why the Lorentzian version of dynamical triangulations
is a promising candidate for a non-perturbative theory of quantum gravity.Comment: 69 pages, 16 figures, references adde
- …
