127 research outputs found

    Minimal domain size necessary to simulate the field enhancement factor numerically with specified precision

    Full text link
    In the literature about field emission, finite elements and finite differences techniques are being increasingly employed to understand the local field enhancement factor (FEF) via numerical simulations. In theoretical analyses, it is usual to consider the emitter as isolated, i.e, a single tip field emitter infinitely far from any physical boundary, except the substrate. However, simulation domains must be finite and the simulation boundaries influences the electrostatic potential distribution. In either finite elements or finite differences techniques, there is a systematic error (ϵ\epsilon) in the FEF caused by the finite size of the simulation domain. It is attempting to oversize the domain to avoid any influence from the boundaries, however, the computation might become memory and time consuming, especially in full three dimensional analyses. In this work, we provide the minimum width and height of the simulation domain necessary to evaluate the FEF with ϵ\epsilon at the desired tolerance. The minimum width (AA) and height (BB) are given relative to the height of the emitter (hh), that is, (A/h)min×(B/h)min(A/h)_{min} \times (B/h)_{min} necessary to simulate isolated emitters on a substrate. We also provide the (B/h)min(B/h)_{min} to simulate arrays and the (A/h)min(A/h)_{min} to simulate an emitter between an anode-cathode planar capacitor. At last, we present the formulae to obtain the minimal domain size to simulate clusters of emitters with precision ϵtol\epsilon_{tol}. Our formulae account for ellipsoidal emitters and hemisphere on cylindrical posts. In the latter case, where an analytical solution is not known at present, our results are expected to produce an unprecedented numerical accuracy in the corresponding local FEF

    Physics-based derivation of a formula for the mutual depolarization of two post-like field emitters

    Get PDF
    Recent analyses of the field enhancement factor (FEF) from multiple emitters have revealed that the depolarization effect is more persistent with respect to the separation between the emitters than originally assumed. It has been shown that, at sufficiently large separations, the fractional reduction of the FEF decays with the inverse cube power of separation, rather than exponentially. The behavior of the fractional reduction of the FEF encompassing both the range of technological interest 0<c/h≲50<c/h\lesssim5 (cc being the separation and hh is the height of the emitters) and c→∞c\rightarrow\infty, has not been predicted by the existing formulas in field emission literature, for post-like emitters of any shape. In this letter, we use first principles to derive a simple two-parameter formula for fractional reduction that can be of interest for experimentalists to modeling and interpret the FEF from small clusters of emitters or arrays in small and large separations. For the structures tested, the agreement between numerical and analytical data is ∼1%\sim1\%

    Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension

    Get PDF
    We report local roughness exponents, αloc\alpha_{\text{loc}}, for three interface growth models in one dimension which are believed to belong the non-linear molecular-beam-epitaxy (nMBE) universality class represented by the Villain-Lais-Das Sarma (VLDS) stochastic equation. We applied an optimum detrended fluctuation analysis (ODFA) [Luis et al., Phys. Rev. E 95, 042801 (2017)] and compared the outcomes with standard detrending methods. We observe in all investigated models that ODFA outperforms the standard methods providing exponents in the narrow interval αloc∈[0.96,0.98]\alpha_{\text{loc}}\in[0.96,0.98] consistent with renormalization group predictions for the VLDS equation. In particular, these exponent values are calculated for the Clarke-Vvdensky and Das Sarma-Tamborenea models characterized by very strong corrections to the scaling, for which large deviations of these values had been reported. Our results strongly support the absence of anomalous scaling in the nMBE universality class and the existence of corrections in the form αloc=1−ϵ\alpha_{\text{loc}}=1-\epsilon of the one-loop renormalization group analysis of the VLDS equation

    Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Get PDF
    Experimental Fowler-Nordheim plots taken from orthodoxly behaving carbon nanotube (CNT) field electron emitters are known to be linear. This shows that, for such emitters, there exists a characteristic field enhancement factor (FEF) that is constant for a range of applied voltages and applied macroscopic fields FMF_\text{M}. A constant FEF of this kind can be evaluated for classical CNT emitter models by finite-element and other methods, but (apparently contrary to experiment) several past quantum-mechanical (QM) CNT calculations find FEF-values that vary with FMF_\text{M}. A common feature of most such calculations is that they focus only on deriving the CNT real-charge distributions. Here we report on calculations that use density functional theory (DFT) to derive real-charge distributions, and then use these to generate the related induced-charge distributions and related fields and FEFs. We have analysed three carbon nanostructures involving CNT-like nanoprotrusions of various lengths, and have also simulated geometrically equivalent classical emitter models, using finite-element methods. We find that when the DFT-generated local induced FEFs (LIFEFs) are used, the resulting values are effectively independent of macroscopic field, and behave in the same qualitative manner as the classical FEF-values. Further, there is fair to good quantitative agreement between a characteristic FEF determined classically and the equivalent characteristic LIFEF generated via DFT approaches. Although many issues of detail remain to be explored, this appears to be a significant step forwards in linking classical and QM theories of CNT electrostatics. It also shows clearly that, for ideal CNTs, the known experimental constancy of the FEF value for a range of macroscopic fields can also be found in appropriately developed QM theory.Comment: A slightly revised version has been published - citation below - under a title different from that originally used. The new title is: "Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure
    • …
    corecore