6,548 research outputs found
From optimal stopping boundaries to Rost's reversed barriers and the Skorokhod embedding
We provide a new probabilistic proof of the connection between Rost’s solution of the Skorokhod embedding problem and a suitable family of optimal stopping problems for Brownian motion, with finite time-horizon. In particular we use stochastic calculus to show that the time reversal of the optimal stopping sets for such problems forms the so-called Rost’s reversed barrier
Global C¹ regularity of the value function in optimal stopping problems
We show that if either the process is strong Feller and the boundary point is probabilistically regular for the stopping set, or the process is strong Markov and the boundary point is probabilistically regular for the interior of the stopping set, then the boundary point is Green regular for the stopping set. Combining this implication with the existence of a continuously differentiable flow of the process we show that the value function is continuously differentiable at the optimal stopping boundary whenever the gain function is so. The derived fact holds both in the parabolic and elliptic case of the boundary value problem under the sole hypothesis of probabilistic regularity of the optimal stopping boundary, thus improving upon known analytic results in the PDE literature, and establishing the fact for the first time in the case of integro-differential equations. The method of proof is purely probabilistic and conceptually simple. Examples of application include the first known probabilistic proof of the fact that the time derivative of the value function in the American put problem is continuous across the optimal stopping boundary
Comment on "Why quantum mechanics cannot be formulated as a Markov process"
In the paper with the above title, D. T. Gillespie [Phys. Rev. A 49, 1607,
(1994)] claims that the theory of Markov stochastic processes cannot provide an
adequate mathematical framework for quantum mechanics. In conjunction with the
specific quantum dynamics considered there, we give a general analysis of the
associated dichotomic jump processes. If we assume that Gillespie's
"measurement probabilities" \it are \rm the transition probabilities of a
stochastic process, then the process must have an invariant (time independent)
probability measure. Alternatively, if we demand the probability measure of the
process to follow the quantally implemented (via the Born statistical
postulate) evolution, then we arrive at the jump process which \it can \rm be
interpreted as a Markov process if restricted to a suitable duration time.
However, there is no corresponding Markov process consistent with the
event space assumption, if we require its existence for all times .Comment: Latex file, resubm. to Phys. Rev.
- …