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THE AMERICAN PUT WITH FINITE-TIME MATURITY

AND STOCHASTIC INTEREST RATE

CHENG CAI, TIZIANO DE ANGELIS, AND JAN PALCZEWSKI

Abstract. In this paper we study pricing of American put options on the Black and Scholes
market with a stochastic interest rate and finite-time maturity. We prove that the option value is a
C1 function of the initial time, interest rate and stock price. By means of Itô calculus we rigorously
derive the option value’s early exercise premium formula and the associated hedging portfolio. We
prove the existence of an optimal exercise boundary splitting the state space into continuation and
stopping region. The boundary has a parametrisation as a jointly continuous function of time and
stock price, and it is the unique solution to an integral equation which we compute numerically. Our
results hold for a large class of interest rate models including CIR and Vasicek models. We show a
numerical study of the option price and the optimal exercise boundary for Vasicek model.

1. Introduction

Pricing of American options is a classical problem in mathematical finance which has attracted
continuous attention since the initial work of McKean in 1965 [36]. Its study has also become
a benchmark for methodological developments of optimal stopping theory and the associated free
boundary problems. In this paper we contribute to this strand of research by studying the American
put option on a Black and Scholes market with a stochastic interest rate and finite-time maturity.
The stock price and the interest rate are driven by (possibly) correlated Brownian motions and
we make minimal assumptions about the dynamics of the interest rate under the pricing measure:
the coefficients are time independent and Lipschitz continuous. CIR model, which does not satisfy
these conditions, is also included in our analysis.

It is well known [8, 28] that the American put option price is given by the value function of a
related optimal stopping problem. In our model, this optimal stopping problem is 3-dimensional
with 2-dimensional diffusive dynamics (stock price and interest rate) and time. The stopping set,
i.e., the set of points (t, r, x) for which is it optimal to exercise the option, is separated from the
continuation set, where it is optimal to hold (or sell) the option, by a single surface called the stopping
boundary. The value function is a classical solution to a PDE in the interior of the continuation set,
i.e., it is twice continuously differentiable in (r, x) and once continuously differentiable in t, whereas
it coincides with the put payoff in the stopping set.

One of our technical contributions is to establish by means of probabilistic methods that the
value function is globally once continuously differentiable in all variables. Then, the continuity of
the gradient of the value function permits the application of a generalisation of Itô’s formula (due
to [11]) and a rigorous derivation of a hedging portfolio. The hedging portfolio invests in three
instruments: the money market (savings) account, the zero-coupon bond with maturity equal to
the maturity of the option and the stock. We show that the usual Delta hedging strategy is optimal:
the positions in the bond and the stock are given by relevant partial derivatives of the value function.
As a further consequence of the generalised Itô’s formula we also derive the decomposition of the
American option price as the sum of the price of a European put option with the same maturity
and the same exercise price, and an early exercise premium. This is known in the literature as the
early exercise premium formula, which corresponds to Doob’s decomposition of supermartingales
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into a martingale and a non-increasing process (applied here to the Snell envelope of the optimal
stopping problem).

Our second contribution concerns the continuity properties of the stopping boundary in our
model, which have not been established in the literature. We are able to demonstrate that the
stopping boundary, when parametrised as a function of (t, x), is continuous. Apart from being of
interest in its own right, this enables a characterisation of the stopping boundary as the unique
continuous solution of an integral equation arising from the early exercise premium decomposition.

When a stopping boundary is known, efficient numerical methods are at disposal for computation
of the option price. One can use Monte Carlo methods based on the early exercise decomposition
or classical PDE methods for Cauchy problems (in contrast to the original problem with a free
boundary).

American option pricing with stochastic interest rates has already attracted a lot of attention
in the literature, mainly focussing on approximations and numerical methods. Lattice (tree) based
methods are employed by Appolloni, Caramellino and Zanette [3] to price options in Black and
Scholes model with CIR interest rate dynamics and by Battauz and Rotondi [6] in a model with
Vasicek interest rates. Geske and Johnson’s ([21]) approximation of discretely exercised American
options prices is adapted by Ho, Stapleton and Subrahmanyam [23] and Chung [13] to a class of
stochastic interest rate models that lead to log-normally distributed bond prices. An alternative
approximation is provided by Menkveld and Vorst [37]. A framework for option pricing with Heath,
Jarrow, Morton’s [22] bond market model is developed by Amin and Jarrow [2] with a binomial-
tree-based implementation of pricing of foreign exchange options performed in Amin and Bodurtha
[1].

Detemple and Tian [16] study the pricing of American options in a general diffusive model with a
d-dimensional Brownian motion. They formulate assumptions under which there is a single exercise
surface but without proving its continuity. In a Black and Scholes market model with Vasicek
interest rates they show that this exercise boundary solves an integral equation of the same form
as in this paper. The uniqueness of solutions to this integral equation is not discussed and their
numerical method for computing the solution is different to ours.

Hedging underlies the success of mathematical finance in derivatives markets. A rigorous theory
that links hedging of American options with solutions of optimal stopping problems was initiated
by Bensoussan [8] using PDE methods and extended by Karatzas [28] to more general models and
payoffs thanks to the martingale theory of optimal stopping. A hedging strategy for an American
option consists of an investment portfolio and a non-decreasing cumulative consumption process
which increases only when the state-time process is in the stopping set. In the Black and Scholes
model with constant interest rate the classical Delta hedge is known to replicate the option [30,
Thm. 7.9, Ch. 2]. This paper seems to be the first to rigorously derive the hedging strategy for
American put options on a market with a stochastic interest rate. This is accomplished thanks
to the C1-regularity of the value function that we are able to prove and which did not appear in
previous works.

A characterisation of an optimal stopping boundary as solution to a (system of) integral equations
has been known since the earliest works (see Van Moerbeke [44]). In more recent works [31, 25, 12,
38] the stopping boundary for the classical Black and Scholes market with constant interest rate is
shown to be the unique solution to an uncountable system of integral equations arising from the
early exercise premium decomposition of the option price. A break-through came with the work
of Peskir [39] where he shows that the stopping boundary is the unique continuous solution of a
single integral equation. The key observation in [39] is that the integral equation only needs to be
satisfied for stock prices at the boundary while earlier results required that it does so for all stock
prices at and below the boundary. Peskir’s [39] integral equation opens doors to side-stepping the
computation of the value function in the process of determining the optimal exercise strategy; see
numerical methods designed in [35, 32]. Our paper extends Peskir’s [39] results to the market with
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a stochastic interest rate and the optimal boundary being a two-dimensional surface. It is also the
continuity of the boundary that allows us to establish the uniqueness of solutions to the integral
equation. A closely related paper that furthermore motivated our numerical approach is [15] where
the authors solve an integral equation for Black and Scholes market with stochastic volatility.

The regularity of the value function in one-dimensional optimal stopping problems is often phrased
as smooth-fit and plays a major role in determining explicit solutions. In a Black and Scholes model
with constant interest rate, smooth-fit for American options with finite-time maturity is understood
as continuous differentiability of the value function with respect to the stock price, for each fixed
value of the time variable (see [25] and subsequent works). That is a ‘directional’ derivative and
continuity is only considered with respect to one variable. Sobolev space regularity is studied in [26]
for American options on multiple assets and deterministic, time-dependent discount rate under the
assumption of uniform ellipticity of the associated second order differential operator. By Sobolev
embedding it is possible to determine continuous differentiability of the value function with respect
to the initial values of all the assets but not with respect to time. Continuous differentiability with
respect to time and stock price for the value of the American put with finite-time maturity and
constant interest rate is obtained in [14] along with other complementary findings about continuous
differentiability of the value function for a large class of optimal stopping problems. In this paper,
we refine the arguments from [14] removing global integrability conditions that may not hold in our
set-up.

The early exercise premium formula for American options was studied in great generality, in
non-Markovian problems beyond the setting of the American put option by Rutkowski [42] with
methods from martingale theory. The nature of the methods employed in [42] to derive their main
results is such that the emphasis is removed from the optimal boundary, which in fact only appears
in specific examples ([42, Sec. 3]) as a time-dependent function. Here instead we derive the early
exercise premium formula starting from the analysis of the optimal boundary (and its regularity)
as a function of time and one stochastic factor from our two-factor model.

The paper is structured as follows. Section 2 introduces the market model, main assumptions
and notation. The main contributions are discussed in Section 3 while their proofs are delayed
until after Section 4. A numerical study with interest rates following Vasicek model is presented
in Section 4 along with a sensitivity analysis. Monotonicity and Lipschitz continuity of the value
function is proved in Section 5. Existence of the stopping surface and its regularity (in the sense
of diffusions) are shown in Section 6. In Section 7 we prove that the value function is continuously
differentiable on the whole domain. Auxiliary estimates needed for admissibility of the hedging
strategy are provided in Section 9. Three appendices contain further details.

2. Problem formulation

Let (Ω,F ,P) be a complete probability space carrying two correlated Brownian motions (Bt)t≥0

and (Wt)t≥0 with E(WtBt) = ρ t for all t ≥ 0 and a fixed ρ ∈ (−1, 1) (here E( · ) is the expectation
under P). We denote by (Ft)t≥0 the filtration generated by (B,W ) augmented with the P-null sets.
On this probability space we consider a financial market with one risky asset (Xt)t≥0 and a bond.
The asset and the risk-free (short) rate (rt)t≥0 take values, respectively, in intervals R+ := (0,∞)
and I ⊆ R, and follow the dynamics

dXt = rtXtdt+ σXtdBt, X0 = x,(2.1)

drt = α(rt)dt+ β(rt)dWt, r0 = r,(2.2)

with α, β : I → R specified below. The probability measure P is a risk neutral measure for this
market. We denote by T > 0 a fixed finite trading horizon.

Throughout the paper we assume σ > 0 and I = (r, r) (with I possibly unbounded). The
right boundary r is unattainable in a finite time (it is a natural or entrance-not-exit boundary).
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The left boundary r is either unattainable or reflecting. It will become clear later that the exact
behaviour of the interest rate process at this boundary is irrelevant for the majority of results and
their proofs. For the dynamics of the interest rate our benchmark example is the CIR model, but,
with a relatively small additional effort, our results cover other stochastic interest rate models, e.g.,
Vasicek model. Therefore, we make the following standing assumption:

Assumption 2.1. The coefficients α and β in (2.2) meet one of the conditions below:

(i) (CIR model) For κ, θ, γ > 0 we have α(r) = κ(θ − r) and β(r) = γ
√
r.

(ii) α and β are globally Lipschitz and continuously differentiable on bounded subsets of I with
β(r) > 0 for all r ∈ I, and r > 0 ≥ r. For any compact set K ⊂ I, and any p ∈ [1, p′] for
some p′ > 2 and t > 0, there is C1 > 0 (depending on T , p and K) such that

sup
r∈K

E

[
sup

0≤s≤T
e−p

∫ s
0 rudu

∣∣∣r0 = r

]
≤ C1.(2.3)

The assumption that r > 0 cannot be relaxed without trivialising the pricing problem. A strictly
positive lower boundary r could, however, be of interest. For the clarity of presentation, it is omitted
but it can be studied with similar methods as those developed in this paper.

The above assumptions are sufficient to guarantee that (2.2) admits a unique strong solution
defined on I. In the case of CIR model, we also have κθ > 0 which implies that the spot rate is
non-negative (but not necessarily strictly positive), see e.g. [27, Sec. 6.3.1], so the left boundary
r = 0 is reflecting (also non-attainable if κθ > σ2/2). Hence, the bound (2.3) is satisfied with the
constant C1 = 1. The linear growth of α and β in (2.2) guarantees that for each p ≥ 2 there is
C2 > 0 only depending on T and p, such that [34, Thm. 2.5.9]

E
[

sup
0≤s≤T

|rs|p
∣∣ r0 = r

]
≤ C2(1 + |r|p), for r ∈ I.(2.4)

Under Assumption 2.1, the solution of (2.1) may be expressed as

Xt = x exp

(
σBt +

∫ t

0

(
rs − σ2

2

)
ds

)
, for t ≥ 0,(2.5)

so that X depends on both initial values r and x. On the contrary, the dynamics of the interest
rate does not depend on the initial asset value. The coupling between the processes (rt)t≥0 and
(Xt)t≥0 stems from formula (2.5) and the correlation between the Brownian motions. To keep track
of the dependence of the processes on their initial values, in what follows we often use the notation
(rrt , X

r,x
t )t≥0 for the process started at rr0 = r and Xr,x

0 = x. Also we may sometimes use the
notation Pt,r,x( · ) = P( · |rt = r,Xt = x), Pr,x = P0,r,x, and Pr( · ) = P( · |r0 = r).

The rational price of an American put option with maturity time T , strike price K > 0, written
on the asset X and evaluated at time t ∈ [0, T ] is given by

v(t, r, x) = sup
0≤τ≤T−t

Er,x

[
e−
∫ τ
0 rtdt

(
K −Xτ

)+
]
,(2.6)

where r ∈ I and x ∈ R+ are, respectively, the values of the spot rate and of the asset at time
t, the function ( · )+ denotes the positive part and the optimisation runs over all (Ft)t≥0-stopping
times bounded by T − t. The above is an optimal stopping problem with Markovian structure and
a 3-dimensional state space.

Since the process

t 7→ e−
∫ t
0 rsds

(
K −Xt

)+
(2.7)

is non-negative and continuous, and thanks to the integrability condition (2.3), we can rely on
standard optimal stopping theory (see, e.g., [30, Appendix D]) to conclude that the smallest optimal
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stopping time for (2.6) is Pr,x-a.s. given by

τ∗ := inf{s ≥ 0 : v(t+ s, rs, Xs) = (K −Xs)
+},(2.8)

where we note that τ∗ ≤ T − t since v(T, r, x) = (K − x)+. Clearly τ∗ = τ∗(t, r, x) depends on the
initial value (t, r, x) of the 3-dimensional state process (t+ s, rs, Xs)s≥0.

The form (2.8) of τ∗ gives rise to the so-called continuation set C and its complement, the stopping
set D, that is

C := {(t, r, x) ∈ [0, T ]× I × R+ : v(t, r, x) > (K − x)+},(2.9)

D := {(t, r, x) ∈ [0, T ]× I × R+ : v(t, r, x) = (K − x)+}.(2.10)

Upon observing the spot rate and the asset value, at each time the option holder must decide
whether to hold the option or to exercise it. She should wait (possibly trading the option on
the market) if (t, rt, Xt) ∈ C since the option value is strictly larger than the payoff of immediate
exercise. On the contrary, if (t, rt, Xt) ∈ D the option should be immediately exercised. Notice that

{T} × I × R+ ⊆ D.

Remark 2.2. Setting

Ds := exp
(
−
∫ s

0
rudu

)
, Vs := v(t+ s, rs, Xs) and Ys := DsVs

(i.e., Y is the discounted option value process), we have that [30, Appendix D]

(Ys)s∈[0,T−t] is a right-continuous Pr,x-supermartingale,(2.11)

(Ys∧τ∗)s∈[0,T−t] is a right-continuous Pr,x-martingale.(2.12)

We will soon show (Proposition 5.1) that v is a continuous function, so that Y is a continuous
process.

Notation. We set

O := [0, T )× I × R+,(2.13)

and denote by ∂C the boundary of C in O, i.e., ∂C := (C ∩ O) \ C.
For future frequent use we denote by L the infinitesimal generator of (rt, Xt)t≥0, which, for any

f ∈ C2(I × R) reads

Lf :=
σ2x2

2
fxx +

β2(r)

2
frr + ρσxβ(r)frx + rxfx + α(r)fr,(2.14)

where fr, fx and frr, frx, fxx denote, respectively, the first and second order partial derivatives of
f .

3. Main results

In this section we provide the main results of the paper. In Sections 3.1 and 3.2, under the sole
Assumption 2.1, we establish continuous differentiability of the value function v(t, r, x) (jointly in
all variables), along with its monotonicity in (t, r, x) and convexity in x. We also prove the existence
and monotonicity of an optimal exercise boundary and present two possible parametrisations of it.
Then, in Sections 3.3—3.6, under a mild additional assumption on α and β (Assumption 3.6) we
derive continuity of the optimal exercise boundary (as a function of two variables) and an integral
equation that uniquely determines it (also under Assumption 3.8). Finally, we obtain the early
exercise premium formula for the option price and the hedging portfolio that replicates the option’s
payoff at all times.
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3.1. Optimal stopping boundary. In the classical Black-Scholes model with constant interest
rate, the stopping set is determined by a boundary: it is optimal to exercise the option the first
time when the stock price drops below this boundary. A similar characterisation of the stopping
region D can be derived in our model with the difference that the stopping boundary is a surface.
To this end, we research monotonicity properties of the value function.

Proposition 3.1. The value function v is finite for all (t, r, x) ∈ O and it satisfies the following
conditions:

(i) t 7→ v(t, r, x) is non increasing for all (r, x) ∈ I × R+,
(ii) r 7→ v(t, r, x) is non increasing for all (t, x) ∈ [0, T ]× R+,

(iii) x 7→ v(t, r, x) is convex and non increasing for all (t, r) ∈ [0, T ]× I.

Proof. See Section 5. �

The monotonicity in t and x and the convexity in x is the same as in the classical Black-Scholes
model and the proof is very similar. The dependence on r has financial explanation: larger interest
rate implies stronger discounting of future cashflows and, hence, lower present value.

Remark 3.2. In the case T = +∞ (perpetual option) the discounted payoff process (2.7) is still
uniformly integrable and continuous. This implies that, letting v∞ denote the value of the perpetual
option, the stopping time

τ∞ = inf{t ≥ 0 : v∞(rt, Xt) = (K −Xt)
+}

is optimal by standard theory and (2.11)–(2.12) continue to hold in this setting (see, e.g., [43, Ch. 3,
Thm. 3]).

Moreover, the proof of Proposition 3.1 can be repeated step by step, upon also noticing that

X̃t := e−
∫ t
0 rsdsXt , t ≥ 0

is a continuous martingale with limt→∞ X̃t = 0, P-a.s. and therefore Er,x[X̃τ ] = x (cf. [29,
Thm. 1.3.22]). So r 7→ v∞(r, x) is non-increasing and x 7→ v∞(r, x) is convex and non-increasing.

From the general optimal stopping theory we expect that the value function v be continuous.
Indeed, this fact is proved from first principles in our Proposition 5.1 in Section 5 (without relying
on the form of the stopping set). The continuity of v means that the continuation set C is open and
the stopping set D is closed. In view of the monotonicity properties established in Proposition 3.1,
we can show that there is a surface splitting C and D.

Proposition 3.3. There exists a function c(t, x) on [0, T ]× [0,∞], such that

D = {(t, r, x) ∈ O : r ≥ c(t, x)} ∪
(
{T} × I × R+

)
,(3.1)

C = {(t, r, x) ∈ O : r < c(t, x)}.(3.2)

The function c(t, x) has following properties:

(i) For any (t0, x0) ∈ [0, T ) × R+, the mapping t 7→ c(t, x0) is right-continuous and non-
increasing and the mapping x 7→ c(t0, x) is left-continuous and non-decreasing.

(ii) c(t, x) = r for (t, x) ∈ [0, T )× [K,∞).
(iii) c(t, x) ≥ 0 for (t, x) ∈ [0, T )× R+, and limx↓0 c(t, x) = 0 for t ∈ [0, T ).

Proof. See Section 6. �

Notice that (ii) and (iii) above imply that it is never optimal to exercise the option out of the
money or if the interest rate is negative. This is in line with classical financial wisdom.

In models with constant interest rate, an optimal boundary is often defined as function of time
which provides a threshold for the process (Xt). An analogous representation of the continuation
and stopping sets is valid in our model. The following proposition whose simple proof is omitted
gives details of the reparametrisation of the stopping boundary.
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Proposition 3.4. Define

b(t, r) := inf{x ∈ R+ : c(t, x) > r}, (t, r) ∈ [0, T )× I.
The mappings t 7→ b(t, r0) and r 7→ b(t0, r) are right-continuous and non-decreasing for any (t0, r0) ∈
[0, T ) × I. For any t ∈ [0, T ) we have K > b(t, r) > 0 when r > 0, and b(t, r) = 0 when r < 0.
Furthermore,

D = {(t, r, x) ∈ O : x ≤ b(t, r)} ∪
(
{T} × I × R+

)
,

C = {(t, r, x) ∈ O : x > b(t, r)}.

The parametrisation of the stopping boundary via the function c(t, x) will usually be more con-
venient. In particular, due to technical reasons that will become clearer in Section 6, we will be able
to prove the continuity of (t, x) 7→ c(t, x) jointly in both variables (t, x), but not the joint continuity
of b in (t, r). However, b is more convenient for numerical computations in Section 4 as it admits
values in a bounded interval [0,K].

3.2. Smoothness of the value function. It is well-known that v satisfies (in the classical sense)

(3.3)
vt(t, r, x) + (L − r)v(t, r, x) = 0, (t, r, x) ∈ C,
v(t, r, x) = (K − x)+, (t, r, x) ∈ D,

where L is the generator of (r,X) defined in (2.14). Hence, standard arguments assert that v is
C1,2,2 in C ∩ int(D). Classical optimal stopping theory identifies the boundary of the set C by
imposing the so-called smooth-fit condition. In the American put problem with constant interest
rate this corresponds to proving that x 7→ v◦x(t, x) is continuous for each t ∈ [0, T ) fixed, with
v◦ denoting the value function associated to the option price. In our setting we prove a stronger
result and show continuous differentiability of v across the stopping boundary ∂C, i.e., the global
continuity of the gradient of v (as a function of all variables) in O. We use ideas similar to those
in [14] but we must refine arguments therein and use estimates with ‘local’ nature since we are not
able to directly check the assumptions required in [14].

Theorem 3.5. We have v ∈ C1(O).

Proof. See Section 7. �

It is worth noticing that the proof of the above result combines a number of steps that may be of
independent interest. In particular, we prove local Lipschitz continuity of v (Proposition 5.1) and
the regularity of the stopping boundary in the sense of diffusions. The latter gives the continuity
of optimal stopping times τ∗ as functions of the initial state, which plays a crucial role in the proof
of the theorem.

3.3. Continuity of the stopping boundary and Dynkin’s formula. Preliminary right/left-
continuity properties of the stopping boundary (t, x) 7→ c(t, x) illustrated above follow from its
monotonicity and the closedness of the stopping set D (see Proposition 3.3). However, thanks to
the C1 regularity of the value function v, we can also prove joint continuity of the stopping boundary
in both variables. For this we require local Hölder continuity of the derivatives of the coefficients
in the dynamics of the short rate r.

Assumption 3.6. The functions α and β in (2.2) have first and second order derivatives, respec-
tively, Hölder continuous on any compact subset of I.

Note that this assumption is satisfied by CIR model. It strengthens Assumption 2.1(ii) by
requiring that the derivatives are not only locally continuous but also locally Hölder continuous.
This technical requirement is satisfied by many popular short rate models. The joint continuity of
optimal stopping boundaries depending on multiple variables has not been proved with probabilistic
techniques before, so the next result is of independent mathematical interest.
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Proposition 3.7. Under Assumption 3.6, the function c : [0, T )× R+ → [0,∞) is continuous.

Proof. See Section 8. �

Summarising, we have v ∈ C1(O) ∩ C1,2(C) ∩ C1,2(D), and the optimal stopping boundary c is
continuous. This is not sufficient to apply the change of variable formula developed in [40] which is
often used in optimal stopping literature to establish Itô’s formula for the value function. Indeed,
since [40] deals with functions that are not necessarily C1, it requires that t 7→ c(t,Xt) be a semi-
martingale, so that the local time on the stopping boundary is well-defined. While we were unable to
prove it for our optimal boundary, we can instead take advantage of the continuous differentiability
of our value function and use a generalisation of Itô’s formula from [11] which only requires the
monotonicity of the boundary. Notice that, interestingly, we need not control the second order
spatial derivatives near ∂C in order to apply results from [11]. We do however need to ensure
that both boundary points of the set I are non-attainable, because we have not proven that the
derivatives vt(t, r, x), vr(t, r, x) and vx(t, r, x), understood as the limit as r → r, are well-defined.

Assumption 3.8. The lower boundary point r is non-attainable by the process (rt). In particular,
under Assumptions 2.1-(i) we require kθ > σ2/2.

Proposition 3.9. Under Assumption 3.8, for any (t, r, x) ∈ O and any stopping time τ ∈ [0, T − t],
the value function satisfies the following Dynkin’s formula:

(3.4) v(t, r, x) = Er,x

[∫ τ

0
e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du+ e−

∫ τ
0 rvdvv(t+ τ, rτ , Xτ )

]
.

Proof. See Section 8. �

In the proof of the above proposition, we show that the discounted value function satisfies for
any stopping time τ ∈ [0, T − t]

(3.5)

e−
∫ τ
0 rvdvv(t+ τ, rτ , Xτ )

= v(t, r, x)−
∫ τ

0
e−
∫ s
0 rvdvKrs1{rs>c(t+s,Xs)}ds+

∫ τ

0
e−
∫ s
0 rvdvσXsvx(t+ s, rs, Xs)dBs

+

∫ τ

0
e−
∫ s
0 rvdvβ(rs)vr(t+ s, rs, Xs)dWs.

This representation will play a fundamental role in deriving a hedging strategy for the American
put option in Section 3.6.

3.4. Early exercise premium. Inserting τ = T − t in (3.4), we obtain a decomposition of the
American option price into a sum of the European option price ve and an early exercise premium
vp (see [42] for a derivation of this formula only using general martingale theory):

(3.6) v(t, r, x) = vp(t, r, x;T, b) + ve(t, r, x;T ),

where

(3.7)

ve(t, r, x;T ) = Er,x
[
e−
∫ T−t
0 rvdv(XT−t −K)+

]
,

vp(t, r, x;T, b) = Er,x

[∫ T−t

0
e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du

]
= Er,x

[∫ T−t

0
e−
∫ u
0 rvdvKru1{Xu<b(t+u,ru)}du

]
.

The last equality follows from r > c(t, x) ⇔ x < b(t, r) by construction of b as the generalised
inverse of c.
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3.5. Integral equation for the stopping boundary. Proposition 3.9 provides a characterisation
of the optimal stopping boundary c(t, x). Indeed, for any (t, x) ∈ [0, T )× R+ such that c(t, x) ∈ I,
inserting τ = T − t and r = c(t, x) in (3.4) yields an integral equation for c:

(3.8) (K − x)+ = Ec(t,x),x

[∫ T−t

0
e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du+ e−

∫ T−t
0 rvdv(K −XT−t)

+

]
.

The condition that c(t, x) ∈ I is necessary as c can take values r and r which do not belong do
the state space I, and the interest rate process r may not be started from there. Notice also that
c(t, x) /∈ I when x ≥ K so the left-hand side of (3.8) can be replaced by (K − x). In line with
well-known results for American options with constant interest rate [39], it also turns out that c is
the unique solution of the integral equation.

Proposition 3.10. Under Assumptions 3.6 and 3.8, the function c is the unique function φ :
[0, T )× R+ → [0, r] such that:

(1) is continuous, non-decreasing in x and non-increasing in t, with φ(t, x) = r̄ for x ≥ K,
(2) φ satisfies (3.8) (with c therein replaced by φ) for all (t, x) ∈ [0, T )×R+ for which φ(t, x) ∈ I.

The integral equation (3.8) has an analogue for the function b(t, r) from Proposition 3.4. Indeed,
for b(t, r) > 0, taking x = b(t, r) and τ = T−t in Proposition 3.9 and using v(t, r, b(t, r)) = K−b(t, r)
we see that b solves the integral equation:

(3.9)
K − b(t, r) = Er,b(t,r)

[∫ T−t

0
e−
∫ u
0 rvdvKru1{Xu<b(t+u,ru)}du

]
+ Er,b(t,r)

[
e−
∫ T−t
0 rvdv(XT−t −K)+

]
,

where we use {Xu < b(t+ u, ru)} = {ru > c(t+ u,Xu)} which follows from x > b(t, r)⇔ r < c(t, x)
by construction of b as the generalised inverse of c. This parametrisation of the integral equation
extends the one obtained in the classical American put problem with constant interest rate to our
two-factor set-up. Once again we can prove uniqueness of the solution to the integral equation but
without requiring continuity of b, which is a non-standard result for this type of equations.

Corollary 3.11. Under the assumptions of Proposition 3.10, the function b is the unique function
ψ : [0, T )× I → [0,K) such that:

(1) t 7→ ψ(t, r) and r 7→ ψ(t, r) are right-continuous and non-decreasing,
(2) the generalised left-continuous inverse φ(t, x) := inf{r ∈ I : ψ(t, r) ≥ x} is continuous in

(t, x), non-decreasing in x and non-increasing in t,
(3) ψ satisfies (3.9) with (b therein replaced by ψ) for all (t, r) ∈ [0, T )×I such that ψ(t, r) > 0.

Notice that φ(t, x) = r̄ for x ≥ K follows immediately from ψ(t, r) < K.
Integral equations (3.8) and (3.9) offer a method to compute the optimal stopping boundary

without using the value function v. We will demonstrate it in Section 4 where we design a numerical
method for solving such integral equations. Knowing the stopping boundary b, the decomposition
(3.6) can be employed to obtain an efficient numerical estimate of the option value. This offers
an alternative to numerical solution of the variational inequality for the value function v, and,
subsequently, extraction of the optimal exercise boundary.

3.6. Hedging portfolio. Thanks to the change of variable formula (3.5) we are also able to rig-
orously construct a hedging portfolio that (super)replicates the option payoff at all times. This is
based on the classical delta-hedging ideas in the Black and Scholes model but its rigorous mathemat-
ical derivation requires smoothness of the option price function which was not previously established
in the literature.

Consider a market comprising three instruments: the money market account Mt := e
∫ t
0 rudu, the

risky stock with the dynamics (2.1), and a zero-coupon bond with maturity T . We will construct a
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hedging portfolio for the American option on this market. We remark that the zero-coupon bond
can be replaced by any other financial instrument whose dynamics depends on the Brownian motion
W driving the interest rate, see Karatzas [28].

The risk-neutral price of the zero-coupon bond at time t ∈ [0, T ] is given by

(3.10) P (t, r) := Er
[
e−
∫ T−t
0 rudu

]
, P (T, r) = 1.

By standard arguments based on pathwise continuity of the flow (t, r) 7→ rrt (ω), one can easily show
that P is continuous on [0, T ]×I. Then, under Assumption 2.1, the classical PDE theory [20, Thm.
9, Ch. 4, Sec. 3] guarantees that P is the unique classical solution of the boundary value problem

(∂t + Lr − r)u(t, r) = 0, (t, r) ∈ [0, T ]× (a, b),

u(t, r) = P (t, r), t ∈ [0, T ), r ∈ {a, b}
u(T, r) = 1, r ∈ [a, b],

where Lr = α(r)∂r + β(r)2/2∂rr and (a, b) ⊂ I is an arbitrary bounded interval. In particular, by
arbitrariness of (a, b) we have P ∈ C1,2([0, T )× I) and

(∂t + Lr − r)P (t, r) = 0, (t, r) ∈ [0, T ]× I.

Then, using Itô’s formula, the discounted bond price dynamics reads

(3.11) de−
∫ s
0 ruduP (s, rs) = Pr(s, rs)β(rs)dWs.

Denote by φ(1), φ(2), φ(3) the holdings in the stock, the bond and the money account, respectively.
Let C be a non-decreasing continuous process starting from 0 modelling consumption. The value
of a self-financing portfolio starting at time 0 from v(0, r, x) is

(3.12) Πs = v(0, r, x) +

∫ s

0
φ(1)
s dXs +

∫ s

0
φ(2)
s dP (s, rs) +

∫ s

0
φ(3)
s dMs − Cs, s ∈ [0, T ].

The portfolio is admissible if all integrals above are semimartingales. Taking the money-market
account as a numeráire, we obtain from equations (3.12) and

(3.13) Πs := φ(1)
s Xs + φ(2)

s P (s,Rs) + φ(3)
s Ms, s ∈ [0, T ],

that the dynamics of the discounted portfolio value reads

de−
∫ s
0 ruduΠs = φ(1)

s de−
∫ s
0 ruduXs + φ(2)

s de−
∫ s
0 ruduP (s, rs)− e−

∫ s
0 rududCs

= e−
∫ s
0 ruduφ(1)

s σXsdBs + e−
∫ s
0 ruduφ(2)

s β(rs)Pr(s, rs)dWs − e−
∫ s
0 rududCs.(3.14)

This means that a self-financing portfolio is uniquely determined by the processes φ(1), φ(2) and C.
Comparing (3.14) with (3.5), a candidate for the hedging strategy is given by

(3.15) φ(1)
s = vx(s, rs, Xs), φ(2)

s =
vr(s, rs, Xs)

Pr(s, rs)
, Cs =

∫ s

0
Kru1{ru>c(u,Xu)}du.

We can indeed prove that such portfolio strategy is admissible and replicates the option’s payoff.

Proposition 3.12. Under Assumption 3.8 the portfolio (φ(1), φ(2), C) is admissible and replicates
the payoff of the American put option.

Proof. See Section 9. �



THE AMERICAN PUT STOCHASTIC INTEREST RATE 11

4. Numerical analysis

In the numerical analysis, we assume that the interest rate r follows Vasicek model. In particular,
this means that I = R and

(4.1) drt = κ(θ − rt)dt+ βdWt,

whose explicit solution is given by

(4.2) rs = rte
−(s−t)κ + θ(1− e−(s−t)κ) + βe−sκ

∫ s

t
eκudWu, s ≥ t ≥ 0.

We first derive a numerical method for computing the optimal stopping boundary using the
integral equation from (3.9). Once the boundary is obtained, we use it to also compute the value
function via (3.6). Section 4.2 contains an analysis of the effect of parameters on the stopping
boundary and the value function.

4.1. Computational approach. With an abuse of notation, we denote by P (t, T ) = P (t, r, T )
the time-t price of a zero-coupon bond with maturity T (c.f. (3.10)); the dependence on the initial
state r is indicated in the subscript of the expectation operator. Recall the integral equation (3.9)
for the boundary b: for (t, r) ∈ [0, T )× I such that b(t, r) > 0, we have

(4.3) K − b(t, r) = vp(t, r, b(t, r);T, b) + ve(t, r, b(t, r);T ),

where ve and vp are stated in (3.7). With the last parameter b of vp, we emphasise the dependence
on the function b:

vp(t, r, x;T, b) = Er,x

[∫ T−t

0
e−
∫ u
0 rvdvKru1{Xu<b(t+u,ru)}du

]
.

In the numerical scheme below, we evaluate vp for consecutive approximations of b.
In Appendix C, we derive the following formulas for ve and vp using well-known properties of the

joint law of (rt, Xt):

ve(t, r, x;T ) = P (t, T )KN (d1)− xN (d2),(4.4)

vp(t, r, x;T, b) =

∫ T

t
KP (t, u)

[ ∫ ∞
−∞

1√
2π
e−

y2

2

(
q(t, u) + y

√
γ2(t, u)

)
N
(
φ(t, u, y; b)

)
dy

]
du,(4.5)

where N (·) is the cumulative distribution function of the standard normal distribution. An explicit
formula for P (t, T ) is given by (C.3) and the other auxiliary quantities used above are stated in
(C.1).

Equation (4.3) defines the boundary b as a fixed point of a non-linear mapping. To compute it,
we follow an iterative scheme motivated by [15]. We fix −∞ < rmin < rmax <∞ and discretise the
variables (t, r) as follows:

{(ti, rj) ∈ [t, T ]× [rmin, rmax]}, i = 1, ...,M, j = 1, ..., N.

We specify an initial approximation b(0) of the boundary:

b(0)(ti, rj) = K, ∀ i, j.

For each n ≥ 1, we compute the boundary b(n) at points (ti, rj)i,j by solving the algebraic equation:

(4.6) K − b(n)(ti, rj)− ve
(
ti, rj , b

(n)(ti, rj);T
)

= vp

(
ti, rj , b

(n−1)(ti, rj);T, b
(n−1)

)
.

The right-hand side, which is difficult to compute, is independent of b(n), while the left-hand side
is known in an explicit form. We stop iterations when, for a pre-determined ε > 0,

max
i,j
|b(n−1)(ti, rj)− b(n)(ti, rj)| < ε.
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Figure 1. Stopping boundary surface b(t, r).

The numerical evaluation of vp
(
ti, rj , b

(n−1)(ti, rj);T, b
(n−1)

)
requires that the boundary b(n−1)

be known for all points (t, r) in the state space while we compute it only on the grid (ti, rj). We,
therefore, use Matlab interpolation function with the Modified Akima cubic Hermite polynomi-
als (‘makima’) interpolation method. Integrals are computed using Matlab functions employing
standard quadrature methods.

It should be remarked that the stopping boundary b may have a singularity (jump) at r = 0,
which corresponds to a horizontal part of the parametrisation c of the stopping surface: a jump
occurs when c−1({0}) 6= [0, T ) × {0}. Furthermore, b(T−, r) := limt↑T b(t, r) satisfies b(T−, r) = 0
for r < 0 and b(T−, r) ≥ b(0, r) > 0 for r > 0, see Proposition 3.4. This hints at a potential
numerical difficulty around r = 0, particularly for times t close to maturity.

4.2. Sensitivity analysis. Unless stated otherwise, numerical results are presented for the param-
eter values

(4.7) T = 1,K = 100, σ = 0.4, κ = 0.3, θ = 0.05, β = 0.01, ρ = 0.5,

and the convergence criterion with ε = 0.01. The magnitude of κ, θ and β is based on empirical
findings reported in the literature, c.f. [24, Chapter 31] and [19]. Although main currencies have
recently enjoyed much lower interest rates, our choice of θ means that the effects of random in-
terest rate and its parameters on the market dynamics and optimal stopping boundary are more
pronounced and graphs more transparent.

Figure 1 plots the stopping boundary b(t, r) using parameters (4.7). The optimal stopping bound-
ary increases as t tends to the maturity T and as the interest rate r grows (c.f. Proposition 3.4).
This behaviour is consistent with the one of the optimal exercise boundary for the American put
option in the Black-Scholes model with a constant interest rate [39]. Figure 2 illustrates the value
function v(t, r, x) via sections in directions of t, r and x rooted at the point (0, 0.0478, 82.11), which
illustrates the findings of Proposition 3.1. In Panel (a), the value decreases to the value of the
immediate exercise as the option is purchased deep in the money.
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(a) t 7→ v(t, 0.0478, 82.11) (b) r 7→ v(0, r, 82.11)

(c) x 7→ v(0, 0.0478, x)

Figure 2. Sections of the value function v(t, r, x) through the point
(0, 0.0478, 82.11). The dashed line displays the payoff (K − x)+.

Effects of the interest rate. The option price is significantly affected by the initial interest rate
(Panel (b)) because the maturity of the option is long (1 year). The effect depends on the mean-
reversion coefficient κ and it increases when the mean reversion parameter decreases. Indeed, this
tendency is clearly visible in Figure 3. A large mean-reversion speed (κ = 1) means that the
interest rate is quickly pulled towards θ = 0.05, diminishing the effect of the initial value. Taking
expectation on both sides of (4.2) gives that the expected interest rate at the maturity T = 1 is

Er[r1] = re−κ + θ(1− e−κ),

which, for κ = 1, means Er[r1] ≈ 0.36 r+ 0.74 θ. On the contrary, we obtain Er[r1] ≈ 0.90 r+ 0.10 θ
for κ = 0.1 and so the effect of the initial interest rate on the stopping boundary (Figure 3a) and
the value function (Figure 3b) is more pronounced. The optimal strategy for κ = 0.1 prescribes to
be more patient compared to larger values of κ when the interest rate is near 0 and act faster when
the interest rate is close to 1. Indeed, with a slow mean-reversion the interest rate stays close to
the current value for longer, so the observed behaviour of the stopping boundary and the of value
function is akin to that observed by a model with a constant interest rate [10, 39].

Effects of the correlation coefficient. The sensitivity of the stopping boundary with respect to the
correlation coefficient ρ between Brownian motions driving the stock price and the interest rate is
displayed in Figure 4; the value function behaves accordingly and it is not displayed. High positive
correlation ρ = 0.8 implies that the interest rate and the stock price tend to move together. The
increase in the interest rate pushes the stock price up and vice versa, resulting in a more unstable
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(a) (b)

Figure 3. The r-sections of the stopping boundary (left panel) and the value func-
tion (right panel) for the mean-reversion parameter κ ∈ {0.1, 0.55, 1}.

(a) (b)

Figure 4. The r and t-sections of the stopping boundary for the correlation coeffi-
cient ρ ∈ {−0.8, 0, 0.8}.

environment and an earlier optimal stopping. On the contrary, a strong negative correlation sees
the stock price and the interest rate dampening the effect of each other’s moves: an increase in
the stock price brings a drop in the interest rate, therefore, making longer waiting (lower stopping
boundary) more desirable due to effect on the drift of the stock price as well as on the discount fac-
tor. Naturally, this effect diminishes the closer one gets to the maturity of the option, see Figure 4b.

Effects of the volatility of stock and interest rate. The effect of the diffusion coefficient of the spot
rate β on the stopping boundary and on the value function is negligible. We compared results for
β ∈ {0.005, 0.01, 0.015}, the range of values observed in empirical literature mentioned above. We
noticed variations in the value function of less than 0.1% and in the stopping boundary of less than
1%.

In line with the financial intuition, the value of American Put option is increasing in σ, see Figure
5c and 5d. When σ = 0.1, the optimal stopping boundary is close to the exercise price K (Figure
5a), so the option is immediately exercised for the initial stock price x = 82.1053 presented on Panel
(c), hence the flat graph. For other values of σ, the exercise boundary is below the initial stock
price and the effect of the interest rate is clearly visible. The structure of results in Figure 5 is, as
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(a) (b)

(c) (d)

Figure 5. Effect of the volatility of the stock price σ. Panels (a) and (b) display
the r and t-sections of the stopping boundary b(t, r) and Panels (c) and (d) show
the r and x-sections of the value function v for σ ∈ {0.1, 0.3, 0.5}.

expected, in line with the findings for the American Put option in the Black-Scholes model with
constant interest rate [10, 39].

The remaining sections of the paper contain technical details and proofs.

5. Monotonicity and Lipschitz continuity of the option value

In this section we establish some initial regularity properties of the option value. We start with
key monotonicity results and then prove Lipschitz continuity of the value function.

Proof of Proposition 3.1. Finiteness of v follows by (2.3) and boundedness of the put payoff. Mono-
tonicity in (i) is also a trivial consequence of the fact that the discounted put payoff is independent
of time. For (ii) we argue as follows: since r 7→ rrt is increasing P-a.s. for all t ∈ [0, T ] (by uniqueness
of the trajectories) we get, for any ε > 0

v(t, r + ε, x) = sup
0≤τ≤T−t

E

[(
Ke−

∫ τ
0 rr+εt dt − xeσBτ−

σ2

2 τ
)+
]

≤ sup
0≤τ≤T−t

E

[(
Ke−

∫ τ
0 rrt dt − xeσBτ−

σ2

2 τ
)+
]

= v(t, r, x)

where we took the discounting inside the positive part and used (2.5).
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Finally, monotonicity in (iii) is a simple consequence of monotonicity of (2.5) with respect to x
and the fact that x 7→ (K − x)+ is decreasing. Convexity also follows by standard arguments: fix
λ ∈ (0, 1), take x and y in R+ and denote xλ := λx+ (1− λ)y. By the convexity of the put payoff,
using that Xr,xλ = λXr,x + (1− λ)Xr,y and that sup(f + g) ≤ sup f + sup g, it is not hard to verify
that v(t, r, xλ) ≤ λv(t, r, x) + (1− λ)v(t, r, y). �

Proposition 5.1. (Lipschitz continuity). For any compact K ⊂ O there exists a constant
LK > 0 such that

|v(t1, r1, x1)− v(t2, r2, x2)| ≤ LK
(
|t1 − t2|+ |r1 − r2|+ |x1 − x2|

)
(5.1)

for all (t1, r1, x1) and (t2, r2, x2) in K.

Proof of Proposition 5.1. We look separately at Lipschitz continuity in the three variables. Argu-
ments for r and x are quite standard while the main argument for the Lipschitz continuity in t goes
back to [26, Thm. 3.6]. However, in our framework the interest rate is random and the coefficients
of the underlying process are state dependent, which results in some additional difficulties.

Continuity in x. Fix (t, r) ∈ [0, T ) × I and take x1 ≤ x2 in R+. Let τ1 := τ∗(t, r, x1) and note
that it is admissible for v(t, r, x2). Using Proposition 3.1(iii), the explicit expression for Xr,x in
(2.5) and the Lipschitz property of the put payoff, we get

0 ≤ v(t, r, x1)− v(t, r, x2) ≤ E
[
e−
∫ τ1
0 rrsds

(
(K −Xr,x1)+ − (K −Xr,x2)+

)]
≤ E

[
eσBτ1−

σ2

2 τ1
]
(x2 − x1) = (x2 − x1),

where in the last equality we used Doob’s optional sampling theorem.

Continuity in r. Fix (t, x) ∈ [0, T )×R+ and take r1 ≤ r2 in I such that (t, r1, x) ∈ K. Denote, for
simplicity, r1 := rr1 and r2 := rr2 and notice that r2

t ≥ r1
t for all t ≥ 0 P-a.s. Set τ1 := τ∗(t, r1, x).

From Proposition 3.1(ii) and simple estimates we obtain

(5.2)

0≤v(t, r1, x)−v(t, r2, x)≤KE
[
e−
∫ τ1
0 r1sds−e−

∫ τ1
0 r2sds

]
=KE

[
e−
∫ τ1
0 r1sds

(
1−e−

∫ τ1
0 (r2s−r1s)ds

)]
≤ KE

[
e−
∫ τ1
0 r1sds

∫ τ1

0
(r2
s − r1

s)ds
]
.

To complete the proof we consider separately cases (i) and (ii) in Assumption 2.1. Let us start with
(i): using that r1

t ≥ 0 for t ≥ 0, and the explicit form of the SDE in the CIR model, we get

E
[
e−
∫ τ1
0 r1sds

∫ τ1

0
(r2
s − r1

s)ds
]
≤
∫ T−t

0
E
[
r2
s − r1

s

]
ds

=

∫ T−t

0
E
[
(r2 − r1) +

∫ s

0
κ(r1

u − r2
u)du

]
ds ≤ (T − t)(r2 − r1),

where we have used the integral equation for (rt) and that r2
t ≥ r1

t .
If Assumption 2.1(ii) holds instead, we apply Hölder inequality:

E
[
e−
∫ τ1
0 r1sds

∫ τ1

0
(r2
s − r1

s)ds
]
≤
(
E
[
e−2

∫ τ1
0 r1sds

]) 1
2
(
E
[( ∫ T−t

0
(r2
s − r1

s)ds
)2]) 1

2
(5.3)

≤ C1/2
1

(
(T − t)

∫ T−t

0
E
[
(r2
s − r1

s)
2
]
ds
) 1

2
,

where C1 > 0 is the constant from (2.3) which depends on K. To conclude it is sufficient to use
moment estimates for SDEs [34, Thm. 2.5.9] which guarantee that

(5.4) E

[
sup

0≤s≤T
(r2
s − r1

s)
2

]
≤ c′(r2 − r1)2
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for some c′ > 0 only depending on T and the coefficients in (2.2).

Continuity in t. For t ∈ [0, T ), define rT−tu := ru(T−t) and XT−t
u := Xu(T−t) for u ∈ [0, 1]. The

couple (rT−tu , XT−t
u )u∈[0,1] is a strong solution to (see, e.g., [5, Ch. 1, Prop. 8.6])

dXT−t
u = (T − t)rT−tu XT−t

u du+ σXT−t
u dB̃u, XT−t

0 = x,

drT−tu = (T − t)α(rT−tu )du+ β(rT−tu )dW̃u, rT−t0 = r,

where (B̃u, W̃u)u∈[0,1] := (Bu(T−t),Wu(T−t))u∈[0,1]. Using these processes, we can rewrite (2.6) as

v(t, r, x) = sup
0≤θ≤1

Er,x

[
exp

{
− (T − t)

∫ θ

0
rT−tu du

}(
K −XT−t

θ

)+
]
,(5.5)

where for any (Fs)s≥0-stopping time τ in [0, T − t] the random variable θ := τ/(T − t) is an
(Fu(T−t))u∈[0,1]-stopping time. Since the process (Bu(T−t),Wu(T−t))u∈[0,1] is identical in law to

(
√
T − tBu,

√
T − tWu)u∈[0,1], with a slight abuse of notation we can identify (rT−tu , XT−t

u )u∈[0,1]

with the unique strong solution of

dXT−t
u = (T − t)rT−tu XT−t

u du+
√
T − tσXT−t

u dBu, XT−t
0 = x,(5.6)

drT−tu = (T − t)α(rT−tu )du+
√
T − tβ(rT−tu )dWu, rT−t0 = r,(5.7)

and take stopping times θ ∈ [0, 1] in (5.5) with respect to the filtration (Ft) generated by (B,W ).
In what follows we denote by θ∗ = θ∗(t, r, x) an optimal stopping time for (5.5).

Fix now 0 ≤ t1 < t2 < T and set r1 := rT−t1 , r2 := rT−t2 . Let θ1 := θ∗(t1, r, x) and for i = 1, 2
denote also

Riu = (T − ti)
∫ u

0
risds and X̂T−t

u = exp
(√

T − t σBu − (T − t)σ
2

2
u
)
,

so that XT−ti
u = xe−R

i
uX̂T−ti

u . We remark that θ1 is also admissible for the problem in (5.5) and
the underlying dynamics (5.6)–(5.7) with t = t2, because it is an (Fs)s≥0-stopping time in [0, 1].
Indeed the advantage of (5.5) with (5.6)–(5.7) is that the class of admissible stopping times no
longer depends on the initial time t.

Recalling Proposition 3.1(i) and using Lipschitz continuity of x 7→ (x)+ we have

(5.8)
0 ≥ v(t2, r, x)− v(t1, r, x) ≥ −Er

[∣∣∣(Ke−R2
θ1 − xX̂T−t2

θ1

)+
−
(
Ke
−R1

θ1 − xX̂T−t1
θ1

)+∣∣∣]
≥ −KEr

[∣∣∣e−R2
θ1 − e−R

1
θ1

∣∣∣]− xE[∣∣X̂T−t1
θ1

− X̂T−t2
θ1

∣∣].
Let us consider the second term on the right hand side of (5.8). By the fundamental theorem of

calculus and the explicit formula for X̂T−t

E
[∣∣X̂T−t1

θ1
− X̂T−t2

θ1

∣∣] = E
[∣∣∣ ∫ t2

t1

X̂T−t
θ1

(σ2

2
θ1 −

1

2
√
T − t

σBθ1

)
dt
∣∣∣]

≤
∫ t2

t1

E
[∣∣∣X̂T−t

θ1

(σ2

2
θ1 −

1

2
√
T − t

σBθ1

)∣∣∣]dt.(5.9)

For t ∈ (t1, t2), define a measure P̃ by dP̃
dP := X̂T−t

1 . Then B̃s = Bs−σs
√
T − t is a Brownian motion

under P̃ and

E
[∣∣∣X̂T−t

θ1

(σ2

2
θ1 −

1

2
√
T − t

σBθ1

)∣∣∣] = Ẽ

[∣∣∣θ1

2
σ2 − σ

2
√
T − t

(B̃θ1 +
√
T − tσθ1)

∣∣]

= Ẽ

[∣∣∣ σ

2
√
T − t

B̃θ1
∣∣] ≤ (Ẽ[ σ2B̃2

θ1

4(T − t)

])1/2

≤ σ

2
√
T − t

≤ σ

2
√
T − t2

=: c1,
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where we applied Hölder inequality and used that θ1 ≤ 1. Inserting the above estimate into (5.9)
gives

(5.10) E
[∣∣X̂T−t1

θ1
− X̂T−t2

θ1

∣∣] ≤ c1(t2 − t1).

Next we address the first term on the right hand side of (5.8). This is performed separately in
cases (i) and (ii) of Assumption 2.1. We start by considering case (ii), i.e., α and β in (5.7) are
Lipschitz continuous. Fundamental theorem of calculus and Hölder inequality give

(5.11)

Er
[∣∣∣e−R1

θ1 − e−R
2
θ1

∣∣∣]
≤ Er

[
max
i=1,2

{
e−(T−ti)

∫ θ1
0 riudu

} ∣∣∣(T − t1)

∫ θ1

0
r1
udu− (T − t2)

∫ θ1

0
r2
udu

∣∣∣]
≤ Er

[
max
i=1,2

{
e−(T−ti)

∫ θ1
0 riudu

}(
(t2 − t1)

∣∣∣ ∫ θ1

0
r1
udu

∣∣∣+ (T − t2)
∣∣∣ ∫ θ1

0
(r2
u − r1

u)du
∣∣∣]

≤ 2c2

[
(t2 − t1)

(
Er
[

sup
0≤t≤1

(
r1
t

)2]) 1
2

+ (T − t2)
(
Er

[∫ 1

0
(r2
u − r1

u)2du

]) 1
2

]
,

where, using (2.3),

c2 := sup
(t,r,x)∈K

(
Er
[

sup
0≤s≤1

e−2(T−t)
∫ s
0 r

T−t
u du

]) 1
2

<∞.

Thanks to (2.4), c3 := sup(t,r,x)∈K

(
Er
[

sup0≤s≤1

(
rT−ts

)2]) 1
2
<∞, so it remains to estimate the last

term of (5.11). By [34, Thm. 2.5.9] there is a constant c4 depending only on K and the Lipschitz
constant for α and β in (5.7) such that

Er
[

sup
0≤t≤1

(
r1
t − r2

t

)2]
≤ c4 Er

[ ∫ 1

0

(
|(T − t1)α(r1

u)− (T − t2)α(r1
u)|2 + |

√
T − t1β(r1

u)−
√
T − t2β(r1

u)|2
)
du
]

≤ c4(t2 − t1)2 Er
[ ∫ 1

0
|α(r1

u)|2du
]

+ c4 (t2 − t1)Er
[ ∫ 1

0
|β(r1

u)|2du
]
,

where for the second inequality we used that
√
T − t1 −

√
T − t2 ≤

√
t2 − t1. Notice that by (2.4)

and the linear growth of α and β

c5 := sup
(r,t,x)∈K

Er
[ ∫ 1

0
|α(rT−tu )|2 + |β(rT−tu )|2du

]
<∞.

Inserting the above estimates into (5.11) we conclude that there is a constant c6 such that for any
(t1, r, x), (t2, r, x) ∈ K

Er
[∣∣∣e−R1

θ1 − e−R
2
θ1

∣∣∣] ≤ c6|t2 − t1|.

This and (5.10) feed into (5.8) so that

(5.12) 0 ≥ v(t2, r, x)− v(t1, r, x) ≥ −c|t2 − t1|

for a suitable c > 0 that depends on K.
Finally, we must estimate the first term on the right hand side of (5.8) under the assumption

that (rt)t≥0 follows the CIR dynamics (Assumption 2.1(i)). Let r̂iu := riu/(T − ti) for u ∈ [0, 1] and
i = 1, 2. The dynamics for r̂i reads

dr̂iu = κ
(
α− (T − ti)r̂iu

)
du+ β

√
r̂iudWu, u ∈ [0, 1].(5.13)
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Since κ(α − (T − t1)r̂) < κ(α − (T − t2)r̂) for r̂ ≥ 0, and r̂1
0 = r/(T − t1) ≤ r/(T − t2) = r̂2

0,
comparison results for SDEs [29, Prop. 5.2.18] imply

(5.14) r̂1
u ≤ r̂2

u for all u ∈ [0, 1], P-a.s.

Using the integral version of (5.13) and the martingale property of the stochastic integral, we obtain

Er
[
r̂2
u − r̂1

u

]
= r
( 1

T − t2
− 1

T − t1

)
+ Er

[∫ u

0

(
(T − t1)r̂1

s − (T − t2)r̂2
s

)
ds

]
≤ r t2 − t1

(T − t1)(T − t2)
+ (t2 − t1)

∫ 1

0
Er
[
r̂1
s

]
ds+ (T − t2)

∫ u

0
Er
[
r̂1
s − r̂2

s

]
ds.

Due to (5.14), the last term is non-positive, so

(5.15) 0 ≤ Er
[
r̂2
u − r̂1

u

]
≤ (t2 − t1)

( r

(T − t1)(T − t2)
+ q1

)
for all u ∈ [0, 1]

where

q1 := sup
(t,r,x)∈K

1

T − t

∫ 1

0
Er
[
rT−tu

]
du <∞.

We use the inequalities (5.14)–(5.15) and the property that r̂iu ≥ 0, for i = 1, 2, to obtain the
following estimates

(5.16)

Er
[∣∣∣e−R1

θ1 − e−R
2
θ1

∣∣∣] = Er
[∣∣∣e−(T−t1)2

∫ θ1
0 r̂1udu − e−(T−t2)2

∫ θ1
0 r̂2udu

∣∣∣]
≤ Er

[∣∣∣e−(T−t1)2
∫ θ1
0 r̂1udu − e−(T−t2)2

∫ θ1
0 r̂1udu

∣∣∣]
+ Er

[∣∣∣e−(T−t2)2
∫ θ1
0 r̂1udu − e−(T−t2)2

∫ θ1
0 r̂2udu

∣∣∣]
≤ q1

(
(T − t1)2 − (T − t2)2

)
+ (T − t2)2

∫ 1

0
Er
[
r̂2
u − r̂1

u

]
du

≤ (t2 − t1)
(

2Tq1 + r
T − t2
T − t1

+ q1(T − t2)2
)
≤ c7(t2 − t1),

where the constant c7 > 0 depends only on K but not on a specific choice of t1, t2, r, x. Hence, as
in the case of Assumption 2.1(ii), we obtain (5.12). �

6. Properties of the free boundary

This section is devoted to establishing the existence of an optimal stopping boundary (free bound-
ary) and some of its main properties. In particular we show the so-called ‘regularity’ of the stopping
boundary in the sense of diffusion theory which, together with the monotonicity, is instrumental in
our proof of global C1 regularity of the value function v.

Proof of Proposition 3.3. The payoff does not depend on (rt) and v is non-increasing in r by Propo-
sition 3.1. Therefore, if (t, r1, x) ∈ D then (t, r2, x) ∈ D for for any r2 > r1. This allows us to
represent the stopping region D via (3.1) with

(6.1) c(t, x) := inf{r ∈ I : v(t, r, x) = (K − x)+},

with the convention that inf ∅ = r. It is convenient to prove (ii) first.

(ii) Fix (t, r, x) ∈ [0, T )× I × [K,∞). If we show that Pr,x(Xε < K) > 0 for some ε ∈ (0, T − t],
then v(t, r, x) > 0 = (K−x)+. This means that (t, r, x) ∈ C and c(t, x) = r. Recall that ρ ∈ (−1, 1)
is the correlation coefficient between the Brownian motions B and W driving the SDEs for X and

r, respectively. Then we can write Bt = ρWt +
√

1− ρ2B0
t for some other Brownian motion B0
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independent of W . Letting (FWt )t≥0 be the filtration generated by W , using the explicit form of
the dynamics of X we have

Pr,x(Xε < K) = Er,x
[
Pr,x(Xε < K|FWε )

]
= Er,x

[
Pr
(

exp
(
σ
√

1− ρ2B0
ε

)
< (K/x) exp

(
− σρWε −

∫ ε

0
rtdt+ σ2

2 ε
)∣∣∣FWε )](6.2)

= Er,x
[
Ψx

(
σρWε +

∫ ε

0
rtdt− σ2

2 ε
)]
,

where

Ψx(z) := P
(

exp
(
σ
√

1− ρ2B0
ε

)
< (K/x)e−z

)
and the final equality above holds by the independence of B0

ε from FWε and the fact that (Wε,
∫ ε

0 rtdt)

is FWε -measurable. Since ρ ∈ (−1, 1), then Ψx(z) > 0 for any z ∈ R and we conclude that
Pr,x(Xε < K) > 0.

(i) By the monotonicity of v in t, we have (t1, r, x) ∈ D =⇒ (t2, r, x) ∈ D for any t2 > t1, hence
c(t, x) is non-increasing in t.

Fix 0 ≤ x1 < x2 < K and let τ1 := τ∗(t, r, x1) be optimal for v(t, r, x1). Then, using that
Xr,x1 ≤ Xr,x2 and recalling (2.5), we obtain

v(t, r, x2)− v(t, r, x1) ≥E
[
e−
∫ τ1
0 rsds

((
K −Xr,x2

τ1

)+ − (K −Xr,x1
τ1

)+)]
≥E

[
e−
∫ τ1
0 rsds

(
Xr,x1
τ1 −Xr,x2

τ1

)]
=x1 − x2 = (K − x2)+ − (K − x1)+.

Therefore, if (t, r, x1) ∈ C then (t, r, x2) ∈ C, which implies that c(t, x) is non-decreasing in x.
Fix arbitrary (t, x) ∈ [0, T ) × R+, let tn ↓ t0 as n → ∞, then c(tn, x) ↑ c(t0+, x) as n → ∞,

where the limit exists by the monotonicity of t 7→ c(t, x). Since (tn, c(tn, x), x) ∈ D, then also
(t0, c(t0+, x), x) ∈ D by the closedness of D, hence c(t0+, x) ≥ c(t0, r) which implies c(t0+, r) =
c(t0, r). Taking xn ↑ x0, a similar argument yields c(t, x0−) = c(t, x0).

(iii) Under the CIR model, the positivity follows by the definition of c(t, x). Only under As-
sumption 2.1 (ii) a proof is required. Assume that there exists (t0, x̂) ∈ [0, T ) × (0,K) such that
c(t0, x̂) < 0. Let 0 > r2 > r0 > r1 > c(t0, x̂) and 0 < x0 < x̂. Define a stopping time

τ1 = inf{s ≥ 0 : (s, rs, Xs) /∈ [0, T − t0)× (r1, r2)× (0, x̂)}.

By the monotonicity of c(t, x), we have (t0, r0, x0) ∈ D. Hence, τ1 is sub-optimal and

K − x0 = v(t0, r0, x0) ≥ Er0,x0

[
e−
∫ τ1
0 rsds (K −Xτ1)+

]
≥ KEr0,x0

[
e−
∫ τ1
0 rsds

]
− x0,(6.3)

where the last inequality follows from the optional sampling theorem and the fact that (K−Xτ1)+ ≥
K −Xτ1 . Since Px0,r0(τ1 > 0) = 1 and rs(ω) < r2 < 0 for s ∈ [0, τ1(ω)), we obtain

KEr0,x0

[
e−
∫ τ1
0 rsds

]
− x0 > K − x0,

which, in conjunction with (6.3), leads to a contradiction.
Finally, we show that c(t, 0+) := limx↓0 c(t, x) = 0 for any t ∈ [0, T ). Assume c(t, 0+) ≥ δ > 0

for some t ∈ [0, T ). By the monotonicity of c(t, x) and the openness of C there is t̂ ∈ [t, T ) such that

[0, t̂)× (r1, r2)× (0,∞) ⊂ C,

where 0 < r1 < r2 < δ. Fix 0 ≤ t0 < t̂ and r0 ∈ (r1, r2). Take an arbitrary x0 > 0. Let

τ2 = inf{s ≥ 0 : (s, rs) /∈ [0, t̂− t0)× (r1, r2)}.
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By construction Pr0,x0
(
(t0 + s, rs, Xs) ∈ C for s ≤ τ2

)
= 1, so τ2 ≤ τ∗(t0, r0, x0) Pr0,x0-a.s. By the

martingale property of the value function we obtain

(6.4)
K − x0 < v(t0, r0, x0) = Er0,x0

[
e−
∫ τ2
0 rsdsv (t0 + τ2, rτ3 , Xτ2)

]
≤ KEr0,x0

[
e−r1τ2

]
= KEr0

[
e−r1τ2

]
.

A contradiction is obtained by taking the limit x0 ↓ 0, since Er0 [e−r1τ2 ] is independent of X and
strictly smaller than 1. �

An important consequence of Proposition 3.4 is that for ε ∈ (0, x)

(t, r, x) ∈ D =⇒ (t+ ε, r, x), (t, r + ε, x), (t, r, x− ε) ∈ D.
We immediately see that ∂C enjoys the so-called cone property [29, Def. 4.2.18]. Indeed, for any

(t0, r0, x0) ∈ ∂C, there is an orthant Ĉ0 with vertex in (t0, r0, x0) (hence a cone with aperture π/4)

that satisfies Ĉ0 ∩O ⊆ D. This will be used to establish regularity of the boundary ∂C in the sense
of diffusions, which, has important consequences for the smoothness of our value function v, as we
shall see below.

To this end, we introduce the hitting time to D, denoted σD, and the entry time to the interior
of D, denoted σ̊D. That is, for (t, r, x) ∈ O we set Pr,x-a.s.

(6.5)
σD := inf{s > 0 : (t+ s, rs, Xs) ∈ D},
σ̊D := inf{s ≥ 0 : (t+ s, rs, Xs) ∈ int(D)} ∧ (T − t).

Both σD and σ̊D are stopping times with respect to the filtration (Ft)t≥0. We will often write
σD(t, r, x) and σ̊D(t, r, x) to indicate the starting point of the process.

Proposition 6.1 (Regularity of the boundary). For (t0, r0, x0) ∈ ∂C, we have

Pt0,r0,x0(σD > 0) = Pt0,r0,x0 (̊σD > 0) = 0.(6.6)

The proof can be found in Appendix B. It rests on Gaussian bounds for the transition density of a
diffusion and ideas from the proof of well-known analogous results for multi-dimensional Brownian
motion, see e.g. [29, Thm. 4.2.19]. It is also worth recalling that ∂C is the boundary of C in O, so
that it excludes {T} × I × R+.

7. Continuous differentiability of the option value

We start by establishing the following continuity properties of processes r and X.

Lemma 7.1. Let (rn, xn)n≥1 be a sequence converging to (r, x) ∈ I × R+ as n→∞. Then

lim
n→+∞

sup
0≤t≤T

|rrnt − rrt | = 0, P-a.s.(7.1)

lim
n→+∞

sup
0≤t≤T

|Xrn,xn
t −Xr,x

t | = 0, P-a.s.(7.2)

Proof of Lemma 7.1. Assume first that (rn)n≥1 is a monotone sequence. Define fnt := rrnt − rrt .
Then for a.e. ω ∈ Ω, t 7→ fnt (ω) is continuous and fnt (ω) converges to 0 monotonically as n→∞ for
all t ∈ [0, T ]. Hence the convergence is uniform on [0, T ] thanks to Dini’s theorem and (7.1) holds.

For an arbitrary sequence (rn)n≥1 define monotone sequences r̄n = supk≥n rk and rn = infk≥n rk.

Since r
rn
t − rrt ≤ r

rn
t − rt ≤ r

r̄n
t − rrt , we have

0 ≤ sup
0≤t≤T

|rrnt − rrt | ≤ sup
0≤t≤T

∣∣rrnt − rrt ∣∣+ sup
0≤t≤T

∣∣rr̄nt − rrt ∣∣ .
By virtue of the first part of the proof, the terms on the right-hand side converge to 0 as n → ∞,
which proves (7.1). The verification of (7.2) is easy using the representation formula (2.5) for X
and (7.1). �
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Lemma 7.2. Let (tn, rn, xn)n≥1 be a sequence in C converging to (t, r, x) ∈ C ∩O as n→∞. Then

lim
n→∞

τ∗(tn, rn, xn) = τ∗(t, r, x), P-a.s.

Proof of Lemma 7.2. The proof relies on known facts from the theory of Markov processes, which we
summarise in Appendix A for the reader’s convenience, combined with Proposition 6.1. Proposition
6.1 and Lemma 7.1 imply that Assumptions A.1 and A.2 are satisfied for K = D ∩ O. It is also
immediate to see that σD = σK P-a.s. with σK defined in (A.1).

The continuity of trajectories of (r,X) means that the process cannot jump instantaneously to the
stopping set D when starting from C, so Pt̂,r̂,x̂(τ∗ = σD) = 1 for any (t̂, r̂, x̂) ∈ C. When (t̂, r̂, x̂) ∈ ∂C,
by construction we have τ∗(t̂, r̂, x̂) = 0, P-a.s., and, using Proposition 6.1, σD(t̂, r̂, x̂) = 0, P-a.s.
Recalling that C ∩ O = C ∪ ∂C, the claim then follows from Proposition A.6. �

Next we provide gradient estimates based on probabilistic arguments.

Proposition 7.3. Let K ⊂ O be a compact set with non-empty interior. There is L = L(K) > 0
such that for any (t, r, x) ∈ (int(K) \ ∂C) we have

vx(t, r, x) = −Et,r,x
[
1{Xτ∗≤K}e

σBτ∗−σ
2

2
τ∗

]
,(7.3)

0 ≥ vt(t, r, x) ≥ −L Et,r,x
[
e−
∫ τK
0 rrsds1{τK≤τ∗}

]
,(7.4)

where τK := inf{s ≥ 0 : (t+ s, rs, Xs) /∈ int(K)}.

Proof of Proposition 7.3. Fix (t, r, x) ∈ (int(K) \ ∂C). Recall that D ⊂ [0, T ] × I × [0,K]. If
(t, r, x) ∈ int(D) then (7.3) follows easily from v(t, r, x) = K − x and vt(t, r, x) = 0. Assume
(t, r, x) ∈ C and notice that τ∗ = σD, Pt,r,x-a.s. We split the proof into two parts.

(Proof of (7.3)) For all sufficiently small ε > 0 we have (t, r, x + ε) ∈ C. From now on, consider
such ε. To simplify notation let σD := σD(t, r, x). Using that σD is admissible and sub-optimal for
v(t, r, x+ ε) we get

v(t, r, x+ ε)− v(t, r, x)

≥ E
[
e−
∫ σD
0 rrsds

((
K − (x+ ε)Xr,1

σD

)+ − (K − xXr,1
σD

)+)]
≥ E

[
e−
∫ σD
0 rrsds1{Xr,x

σD≤K}
(
xXr,1

σD − (x+ ε)Xr,1
σD

)]
= −εE

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD
]
.

Dividing the above expression by ε and taking limits as ε→ 0 we get

vx(t, r, x) = lim
ε→0

1

ε
(v(t, r, x+ ε)− v(t, r, x)) ≥ −E

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD

]
.(7.5)

For the reverse inequality we use that σD is admissible and sub-optimal for v(t, r, x− ε):

v(t, r, x)− v(t, r, x− ε) ≤ E
[
e−
∫ σD
0 rrsds

((
K − xXr,1

σD

)+ − (K − (x− ε)Xr,1
σD

)+)]
≤ −εE

[
1{Xr,x−ε

σD ≤K}e
σBσD−

σ2

2
σD

]
≤ −εE

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD

]
,

where in the last inequality we used that Xr,x−ε
s < Xr,x

s , s ≥ 0. Divide the above expression by ε
and take limits as ε→ 0:

vx(t, r, x) = lim
ε→0

1

ε
(v(t, r, x)− v(t, r, x− ε)) ≤ −E

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD

]
.(7.6)

Now (7.5) and (7.6) imply (7.3).

(Proof of (7.4)) The upper bound vt(t, r, x) ≤ 0 follows from the monotonicity of v in t (Proposi-
tion 3.1). For all sufficiently small ε > 0 we have (t+ε, r, x) ∈ K∩C and τK := τK(t, r, x) ≤ T −t−ε.
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From now on, consider such ε. Denote σD := σD(t, r, x). Thanks to the choice of ε, the stopping
time η := σD ∧ τK is admissible for v(t + ε, r, x). Using the (super)martingale property of v (see
(2.11)–(2.12)) we get

v(t+ ε, r, x)− v(t, r, x)

≥ E
[
e−
∫ η
0 r

r
sds
(
v(t+ ε+ η, rrη, X

r,x
η )− v(t+ η, rrη, X

r,x
η )
)]

(7.7)

= E
[
e−
∫ τK
0 rrsds

(
v(t+ ε+ τK, r

r
τK , X

r,x
τK )− v(t+ τK, r

r
τK , X

r,x
τK )
)

1{τK<σD}

]
,

where the equality follows from v(t + ε + σD, r
r
σD , X

r,x
σD ) = v(t + σD, r

r
σD , X

r,x
σD ) = K − Xr,x

σD on

{τK ≥ σD} since t 7→ b(t, r) is non-decreasing (Proposition 3.4). Let Kδ = {(t+ s, r, x) : (t, r, x) ∈
K and s ∈ [0, δ]}. Fix a sufficiently small δ > 0 so that this set is contained in O and set L equal
to the Lipschitz constant for v on Kδ (c.f. Proposition 5.1). Since (t+ τK, r

r
τK , X

r,x
τK ) ∈ ∂K, we have

(t+ ε+ τK, r
r
τK , X

r,x
τK ) ∈ Kδ for any ε < δ. Using the Lipschitz continuity of v, we bound (7.7) from

below by

−εLE
[
e−
∫ τK
0 rrsds1{τK<σD}

]
.

Dividing by ε and taking the limit ε→ 0 completes the proof of (7.4). �

We are now ready to prove that the value function is globally continuously differentiable on O.

Proof of Theorem 3.5. It suffices to show that the value function has continuous partial derivatives
across the stopping boundary, that is

lim
n→∞

vt(tn, rn, xn) = lim
n→∞

vr(tn, rn, xn) = 0,(7.8)

lim
n→∞

vx(tn, rn, xn) = −1,(7.9)

for any sequence (tn, rn, xn) in C converging to (t0, r0, x0) ∈ ∂C as n→∞. Fix such a sequence and
denote τn = τ∗(tn, rn, xn).

Convergence of vx. Note that Ptn,rn,xn(Xτn = K, τn < T − tn) = 0 (Proposition 3.3) and
Ptn,rn,xn(Xτn = K, τn = T − tn) ≤ Ptn,rn,xn(XT−tn = K) = 0 (the final equality can be shown
by arguments as in (6.2)). From Proposition 7.3 we therefore have

vx(tn, rn, xn) = E

[
1{Xrn,xn

τn <K}e
σBτn−σ

2

2
τn

]
.

From Lemma 7.2, we obtain limn→∞ τn = 0 P-a.s. We know from (t0, r0, x0) ∈ ∂C that x0 <
K. Lemma 7.1 and the continuity of trajectories of (r,X) imply the convergence 1{Xrn,xn

τn <K} →
1{x0<K} = 1 as n→∞. An application of the dominated convergence theorem completes the proof
of (7.9).

Convergence of vt. Let K be a closed ball centered on (t0, r0, x0) and contained in O. With no
loss of generality (by discarding a finite number of initial elements of the sequence) we assume that
(tn, rn, xn) ∈ int(K) for all n ≥ 1. Let

τnK := inf{s ≥ 0 : (tn + s, rrns , X
rn,xn
s ) /∈ K}, n ≥ 0

and notice, in particular, that P(τ0
K > 0) = 1. The boundary ∂K is regular for O \ K and (t, r,X)

by the same reasoning as in the proof of Proposition 6.1. Repeating arguments from the proof of
Lemma 7.2 shows that τnK → τ0

K, P-a.s. Fix ε ∈ (0, 1). Since P(τ0
K > 0) = 1, there exists δ > 0 such
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that P(τ0
K > δ) ≥ 1− ε. From inequality (7.4), we get

(7.10)

0 ≥ vt(tn, rn, xn) ≥ −LE

[
e−
∫ τnK
0 rrns ds1{τnK≤τn}

]
= −LE

[
e−
∫ τnK
0 rrns ds

(
1{τnK≤τn}∩{τ

n
K≥δ} + 1{τnK≤τn}∩{τ

n
K<δ}

)]
≥ −LE

[
e−
∫ τnK
0 rrns ds

(
1{τn≥δ} + 1{τnK<δ}

)]
.

Using that |rt∧τnK | is bounded by some constant rK for every n, we have

(7.11) 0 ≥ vt(tn, rn, xn) ≥ −LerKT (P (τn ≥ δ) + P (τnK < δ)) .

Lemma 7.2 guarantees that τn → 0 P-a.s., so the first term converges to 0 as n → ∞ by the
dominated convergence theorem. Fatou’s lemma gives a bound for the second term:

lim sup
n→∞

P (τnK < δ) ≤ E
[

lim sup
n→∞

1{τnK<δ}

]
≤ E

[
1{τ0K≤δ}

]
≤ ε,

where we used that lim supn 1An = 1lim supn An and the convergence of the stopping times. We obtain
the convergence of vt in (7.8) by sending ε→ 0.

Convergence of vr. Consider a sequence (tn, rn, xn) ∈ C converging to (t0, r0, x0) ∈ ∂C. Since ∂C
is the boundary of C in O, without loss of generality we can assume that

{(rn, xn)} ⊂ int(K), with K := [ra, rb]× [xa, xb] ⊂ (r, r)× R+.

Denote KT := [ta, tb]×K. where ta = infn tn ≥ 0 and tb = supn tn < T .
We know that vr ≤ 0 on C (Proposition 3.1). We will now develop a lower bound for vr on C∩KT ,

which will allow us to show that vr(tn, rn, xn)→ 0 as n→∞. For (t, r, x) ∈ C ∩ KT we define

τK(t, r, x) := inf{s ≥ 0 : (rrs , X
r,x
s ) /∈ K} ∧ (T − t).

By the monotonicity of r 7→ rrs and the explicit expression (2.5) for Xr,x we have, for all (r, x) ∈ K,

rras ≤ rrs ≤ rrbs , and Xra,x
s ≤ Xr,x

s ≤ Xrb,x
s , P-a.s.

from which it is not hard to verify that for all (t, r, x) ∈ C ∩ KT

τK(t, r, x) ≥ τ̂K := τK(tb, ra, xa) ∧ τK(tb, ra, xb) ∧ τK(tb, rb, xa) ∧ τK(tb, rb, xb), P-a.s.

Take (t, r, x) ∈ C ∩ KT . There is ε > 0 such that (t, r + ε, x) ∈ C ∩ KT for all ε ∈ (0, ε]. Denote
by τ∗ the optimal stopping time for (t, r, x). For any ε ∈ (0, ε], we apply the (super)martingale
properties of the value function (2.11)-(2.12) with the stopping time τ∗ ∧ τ̂K:

(7.12)

0 ≥ v(t, r + ε, x)− v(t, r, x)

≥ E
[
e−
∫ τ∗∧τ̂K
0 rr+εs dsv

(
t+ (τ∗ ∧ τ̂K), rr+ετ∗∧τ̂K , X

r+ε,x
τ∗∧τ̂K

)
− e−

∫ τ∗∧τ̂K
0 rrsdsv

(
t+ (τ∗ ∧ τ̂K), rrτ∗∧τ̂K , X

r,x
τ∗∧τ̂K

)]
≥ E

[
1{τ̂K≤τ∗}

(
e−
∫ τ̂K
0 rr+εs dsv(t+ τ̂K, r

r+ε
τ̂K

, Xr+ε,x
τ̂K

)− e−
∫ τ̂K
0 rrsdsv(t+ τ̂K, r

r
τ̂K
, Xr,x

τ̂K
)
)]

+ E
[
1{τ̂K>τ∗}

(
e−
∫ τ∗
0 rr+εs ds(K −Xr+ε,x

τ∗ )+ − e−
∫ τ∗
0 rrsds(K −Xr,x

τ∗ )+
)]

=: E1 + E2,
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where for the final inequality we used that v(t+ τ∗, r
r
τ∗ , X

r,x
τ∗ ) = (K −Xr,x

τ∗ )+, P-a.s. Recalling that
rr+εs ≥ rrs and v is non-negative we have

(7.13)

E1 = E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds

(
v(t+ τ̂K, r

r+ε
τ̂K

, Xr+ε,x
τ̂K

)− v(t+ τ̂K, r
r
τ̂K
, Xr,x

τ̂K
)
)]

− E
[
1{τ̂K≤τ∗}

(
e−
∫ τ̂K
0 rrsds − e−

∫ τ̂K
0 rr+εs ds

)
v(t+ τ̂K, r

r
τ̂K
, Xr,x

τ̂K
)
]

≥ −LE
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds

(
|rr+ετ̂K

− rrτ̂K |+ |X
r+ε,x
τ̂K

−Xr,x
τ̂K
|
)]

−KE
[
1{τ̂K≤τ∗}

(
e−
∫ τ̂K
0 rrsds − e−

∫ τ̂K
0 rr+εs ds

)]
,

where the second inequality comes from the local Lipschitz property of the value function (L > 0 is
the constant from Proposition 5.1), and the function v is bounded by the strike price K from above.

We shall now use the differentiability of the diffusion flow (rrs) with respect to the parameter r in
the sense of [34, Thm. 2.8.6]. Apart from other assumptions, this requires that the coefficients are
globally Lipschitz. As we only consider (r,X) in a compact set K, we construct a two dimensional

diffusion (r̃, X̃) whose coefficients coincide with the coefficients of (r,X) on K, are globally Lipschitz,

continuously differentiable and with a polynomial growth. The process (r̃s, X̃s) is indistinguishable
from (rs, Xs) on {s ≤ τ̂K}, i.e., on the set where it is of interest for the estimation of E1 and
E2, so for the sake of readability we will write (r,X) in the estimates below (we use an analogous
construction in Appendix B, where full details are available).

By [34, Thm. 2.8.6], there is a measurable in (s, ω) process (yrs(ω))s≥0, depending on r, such that
for any q ≥ 1

(7.14) lim
ε↓0

∥∥∥∥ sup
s∈[0,T ]

∣∣∣rr+εs − rrs
ε

− yrs
∣∣∣∥∥∥∥
q

= 0 and lim
ε↓0

∥∥∥rr+ε· − rr·
ε

− yr·
∥∥∥∗
q

= 0,

where ‖Z‖q = (E[|Z|q])1/q and ‖Y·‖∗q =
(
E
[ ∫ T

0 |Ys|
qds
])1/q

.

Fix 1
p + 1

q + 1
w = 1 for some p ∈ (1, 2]. Recalling that rr+εs ≥ rrs and using Hölder inequality yields

(7.15)

1

ε
E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds|rr+ετ̂K

− rrτ̂K |
]

≤ E

[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds

(∣∣∣1
ε

(
rr+ετ̂K

− rrτ̂K)− yrτ̂K
∣∣∣+ |yrτ̂K |

)]
≤ C1/p

1 P(τ̂K ≤ τ∗)
1
w

(∥∥∥1

ε

(
rr+ετ̂K

− rrτ̂K
)
− yrτ̂K

∥∥∥
q

+ ‖yrτ̂K‖q
)
−−→
ε↓0

C
1/p
1 P(τ̂K ≤ τ∗)

1
w ‖yrτ̂K‖q,

where we used the estimate (2.3) in the last inequality and (7.14) to obtain the convergence.
To bound the last term on the right hand side of (7.13), we observe that

E
[
1{τ̂K≤τ∗}

(
e−
∫ τ̂K
0 rrsds − e−

∫ τ̂K
0 rr+εs ds

)]
≤ E

[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rrsds

∫ τ̂K

0
(rr+εs − rrs)ds

]
.

We then apply Hölder inequality and the second limit in (7.14):

(7.16)

1

ε
E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rrsds

∫ τ̂K

0
(rr+εs − rrs)ds

]
≤ E

[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rrsds

∫ τ̂K

0

∣∣∣1
ε

(rr+εs − rrs)− yrs
∣∣∣+ |yrs |ds

]

≤ C1/p
1 P(τ̂K ≤ τ∗)

1
w

(∥∥∥1

ε
(rr+ε· − rr· )− yr·

∥∥∥∗
q

+ ‖yr· ‖∗q
)
−−→
ε↓0

C
1/p
1 P(τ̂K ≤ τ∗)

1
w ‖yr· ‖∗q .
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By the explicit formula (2.5), we have Xr,x
t = e

∫ t
0 r

r
sdsX̂x

t , where X̂x
t := xeσBt−

1
2
σ2t, and

0 ≤ Xr+ε,x
t −Xr,x

t ≤ e
∫ t
0 r

r+ε
s dsX̂x

t

∫ t

0
(rr+εs − rrs)ds.

We proceed similarly as in (7.16) to obtain

(7.17)

1

ε
E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds|Xr+ε,x

τ̂K
−Xr,x

τ̂K
|
]

≤ ‖X̂x
τ̂K
‖p P(τ̂K ≤ τ∗)

1
w

(∥∥∥1

ε
(rr+ε· − rr· )− yr·

∥∥∥∗
q

+ ‖yr· ‖∗q
)

−−→
ε↓0
‖X̂x

τ̂K
‖p P(τ̂K ≤ τ∗)

1
w ‖yr· ‖∗q .

Similar arguments as above enable us to derive a lower bound for E2:

(7.18)

1

ε
E2 =

1

ε
E

[
1{τ̂K>τ∗}

((
Ke−

∫ τ∗
0 rr+εs ds − X̂x

τ∗

)+
−
(
Ke−

∫ τ∗
0 rrsds − X̂x

τ∗

)+
)]

≥ −1

ε
K E

[
1{τ̂K>τ∗}

(
e−
∫ τ∗
0 rrsds − e−

∫ τ∗
0 rr+εs ds

)]
≥ −1

ε
K E

[
1{τ̂K>τ∗}e

−
∫ τ∗
0 rrsds

∫ τ∗

0
(rr+εs − rrs)ds

]
≥ −KC1/p

1 P(τ̂K > τ∗)
1
w

(∥∥∥1

ε
(rr+ε· − rr· )− yr·

∥∥∥∗
q

+
(
E
[ ∫ τ∗

0
|yrs |qds

])1/q
)

−−→
ε↓0
−KC1/p

1 P(τ̂K > τ∗)
1
w

(
E
[ ∫ τ∗

0
|yrs |qds

])1/q
,

where in the first inequality we used the Lipschitz property of z 7→ (z − X̂x
t (ω))+ for any ω ∈ Ω.

Combining (7.15)–(7.18) gives a lower bound for vr on C ∩ KT :

(7.19)

0 ≥ vr(t, r, x)

≥ −LP(τ̂K ≤ τ∗)
1
w

(
C

1/p
1 ‖y

r
τ̂K
‖q + ‖X̂x

τ̂K
‖p ‖yr· ‖∗q

)
−K P(τ̂K ≤ τ∗)

1
w C

1/p
1 ‖y

r
· ‖∗q

−KC1/p
1 P(τ̂K > τ∗)

1
w

(
E
[ ∫ τ∗

0
|yrs |qds

])1/q
.

By [34, Thm. 2.8.8] and standard diffusion estimates [34, Cor. 2.5.10] the norms of yr and X̂x

above are bounded uniformly for (t, r, x) ∈ KT ∩ C (recall that τ∗ = τ∗(t, r, x)). Now take (t, r, x) =
(tn, rn, xn) in (7.19). Since τ̂K > 0 P-a.s. and limn→∞ τ∗(tn, rn, xn) = 0 P-a.s. by Lemma 7.2, the
dominated convergence theorem gives that the first two terms of (7.19) tend to zero as n→∞ due
to P(τ̂K ≤ τ∗(tn, rn, xn))→ 0 and the last term converges to zero because

lim
n→0

E
[ ∫ τ∗(tn,rn,xn)

0
|yrns |qds

]
= 0

and the mapping r 7→ yr is continuous in the norm ‖ · ‖∗q , see [34, Thm. 2.8.6]. This concludes the
proof. �

8. Continuity of the stopping boundary and the integral equation

Proof of Proposition 3.7. Since c(t, x) = r on [0, T )× [K,∞), it remains to prove the continuity at
(t0, x0) ∈ (0, T ) × (0,K]. It is known from Proposition 3.3 that t 7→ c(t, x0) is non-increasing and
right-continuous at t0, and x 7→ c(t0, x) is non-decreasing and left-continuous at x0.

We first show that x 7→ c(t0, x) is right continuous at x0. It is obvious for x0 = K since
c(t0, x) = r for x ≥ K. We proceed with an argument for x0 < K. Assume, by contradiction,
that c(t0, x0+) > c(t0, x0), so there exist r1, r2 such that c(t0, x0+) > r2 > r1 > c(t0, x0). Let
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R := (r1, r2)× (x0, x1) for some x1 ∈ (x0,K) and R0 := (r1, r2)× {x0}. From the monotonicity of
c(t, x), we have {t0} ×R ⊂ C and {t0} ×R0 ⊂ D. Let u be a function defined on R and satisfying

(8.1)
(L − r)u(r, x) = −vt(t0, r, x), (r, x) ∈ R,

u(r, x) = v(t0, r, x), (r, x) ∈ ∂R.

Thanks to [20, Theorem 10, p. 72] we know that (r, x) 7→ vt(t0, r, x) is C1 on R with Hölder
continuous derivatives. Since the coefficients of (2.14) have Hölder continuous first derivatives, there
is a unique classical solution u(r, x) of the above PDE (which is of elliptic type) and u ∈ C3(R)∩C(R)
[20, Theorems 19 and 20, p. 87]. From (3.3), the function (r, x) 7→ v(t0, r, x) satisfies (8.1), so, by
uniqueness, u = v on R and u ∈ C1(R) by Theorem 3.5.

We differentiate the PDE in (8.1) with respect to r and obtain

1

2
σ2x2urxx(r, x) = −L1ur(r, x)−L2ux(r, x)−xux(r, x)−vtr(t0, x, r)+u(x, r), (r, x) ∈ R,(8.2)

where

L1f :=
1

2
β2(r)frr +

(
β(r)β′(r) + α(r)

)
fr +

(
α′(r)− r

)
f

L2f :=ρσβ(r)xfrr +
(
ρσβ′(r) + rx

)
fr.

Let φ be a C∞ function with compact support on (r1, r2) such that
∫ r2
r1
φ(r)dr = 1 and for x ∈

(x0, x1) define

Fφ(x) = −
∫ r2

r1

uxx(r, x)φ′(r)dr.

Multiply (8.2) by 2
σ2x2

φ(r) and integrate over (r1, r2):∫ r2

r1

urxx(x, r)φ(r)dr = −
∫ r2

r1

2

σ2x2
φ(r)

[
L1ur(r, x) + L2ux(r, x)

]
dr −

∫ r2

r1

2

σ2x
φ(r)ux(r, x)dr

−
∫ r2

r1

2

σ2x2
φ(r)vtr(t0, r, x)dr +

∫ r2

r1

2

σ2x2
φ(r)u(r, x)dr.

Intergration by parts gives

(8.3)

Fφ(x) = −
∫ r2

r1

2

σ2x2

[
ur(r, x)L∗1φ(r)dr + ux(r, x)L∗2φ(r)

]
dr −

∫ r2

r1

2

σ2x
φ(r)ux(r, x)dr

+

∫ r2

r1

2

σ2x2
φ′(r)vt(t0, r, x)dr +

∫ r2

r1

2

σ2x2
φ(r)u(r, x)dr,

where L∗1 and L∗2 are adjoint operators to L1 and L2, respectively. The expression above involves
only u and its first derivatives, which are continuous by Theorem 3.5. We take the limit x→ x0 in
(8.3) and notice that ur(r, x0) = vr(t0, r, x0) = vt(t0, r, x0) = 0, ux(r, x0) = vx(t0, r, x0) = −1 and
u(r, x0) = K − x0. Thus,

lim
x↓x0

Fφ(x) =

∫ r2

r1

2

σ2x0
φ(r)dr +

∫ r2

r1

2

σ2x2
0

φ(r)(K − x0)dr =
2K

σ2x2
0

> 0,

where we also use that
∫ r2
r1
L∗2φ(r)dr = 0. Since x 7→ Fφ(x) is continuous on (x0, x1) and limx↓x0 Fφ(x) >

0, we have Fφ(x) > 0 on (x0, x0 + ε) for any sufficiently small ε > 0. Using additionally that u is
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C1(R), we perform the following integration

0 <

∫ x0+ε

x0

∫ y

x0

Fφ(x)dxdy =−
∫ r2

r1

∫ x0+ε

x0

∫ y

x0

uxx(r, x)dxdy φ′(r)dr

=−
∫ r2

r1

∫ x0+ε

x0

(ux(r, y) + 1)dy φ′(r)dr

=−
∫ r2

r1

(u(r, x0 + ε)− (K − x0) + ε)φ′(r)dr

=

∫ r2

r1

ur(r, x0 + ε)φ(r)dr,

where we have used Fubini’s theorem in the first equality, ux(r, x0) = −1 in the second equality,
u(r, x0) = K − x0 in the third equality, and the integration by parts in the last equality. As the
above inequality holds for an arbitrary smooth function φ with a compact support in (r1, r2), we
must have ur(r, x0 + ε) = vr(t0, r, x0 + ε) > 0 almost everywhere on (r1, r2). This contradicts that
r 7→ v(t0, r, x0+ε) is a non-increasing function (see Proposition 3.1), hence x 7→ c(t, x) is continuous.

We turn our attention to the left-continuity of t 7→ c(t, x0) at t0 (the right-continuity has already
been established in Proposition 3.3). Assume, by contradiction, that the left-continuity fails at t0.
Since t 7→ c(t, x0) is non-increasing, there exist r1, r2 such that c(t0−, x0) > r2 > r1 > c(t0, x0). By
the continuity of x 7→ c(t0, x) at x0 and the monotonicity of c(t, x), there is x1 ∈ (x0,K) such that
r1 > c(t0, x1) ≥ c(t0, x0). Hence, for any sequence tn ↑ t0, we have

c(tn, x1) ≥ c(tn, x0) ≥ c(t0−, x0) > r2 > r1 > c(t0, x1) ≥ c(t0, x0),

so that

R : = (t1, t0)× (r1, r2)× (x0, x1) ⊂ C,
Rt0 : = {t0} × (r1, r2)× (x0, x1) ⊂ D.

Consider a PDE

(8.4)
wt(t, r, x) + (L − r)w(t, r, x) = 0, (t, r, x) ∈ R,
w(t, r, x) = v(t, r, x), (t, r, x) ∈ ∂pR,

where ∂pR denotes the parabolic boundary of R. By [20, Theorem 6, p. 65], Equation (8.4) admits

a unique classical solution w, which coincides with v on R. This also implies that w ∈ C1(R) by
Theorem 3.5.

Let φ1 be a C∞ function with compact support in (x0, x1) and φ2 be a C∞ function with
compact support in (r1, r2) such that

∫ x1
x0
φ1(x)dx =

∫ r2
r1
φ2(r)dr = 1. Fixing t = tn ∈ (t1, t0) from

the sequence tn ↑ t0, we multiply (8.4) by φ1(x)φ2(r) and integrate over (r1, r2)× (x0, x1):∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)
{
wt(tn, r, x) + (L − r)w(tn, r, x)

}
dxdr = 0.

Integration by parts gives

(8.5)

∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)wt(tn, r, x)dxdr +

∫ r2

r1

∫ x1

x0

w(tn, r, x)(L∗ − r)φ1(x)φ2(r)dxdr = 0,

where L∗ is the adjoint operator for L. When n→∞, the first integral vanishes since w ∈ C1(Rt)
and wt = vt = 0 on Rt0 . By the dominated convergence theorem, (8.5) reads

0 =

∫ r2

r1

∫ x1

x0

w(t0, r, x)(L∗ − r)φ1(x)φ2(r)dxdr =

∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)(L − r)(K − x)dxdr

=

∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)(−rK)dxdr =

∫ r2

r1

φ2(r)(−rK)dr
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where we integrate by parts and use that v(t, r, x) = (K − x) on Rt0 for the second equality. We
obtain a contradiction because the last integral is strictly negative.

Having established the continuity in t and x separately, the monotonicity of c allows us to conclude
the continuity of (t, x) 7→ c(t, x) at (t0, x0) (see, e.g., [33]). �

Proof of Proposition 3.9. Let Kn be an increasing sequence of compact subsets of O such that
∪n∈NKn = O and define τn = inf{t ∈ [0, T − t] : (t + s, rs, Xs) /∈ Kn} ∧ (T − t − 1

n) for n large

enough so that 1
n ≤ T − t. We apply a version of Itô formula from [11, Theorem 2.1]. We delay the

verification of the assumptions required until the end of the proof. Using that

(8.6)
(∂t + L − r)v(t, r, x) = 0, r < c(t, x),

(∂t + L − r)v(t, r, x) = (∂t + L − r)(K − x) = −rK, r > c(t, x),

we obtain that the dynamics of the discounted value function on [0, τn] is given by

(8.7)

e−
∫ s∧τn
0 rvdvv(t+ s ∧ τn, rs∧τn , Xs∧τn)

= v(t, r, x)−
∫ s∧τn

0
e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du+

∫ s∧τn

0
e−
∫ u
0 rvdvσXuvx(t+ u, ru, Xu)dBu

+

∫ s∧τn

0
e−
∫ u
0 rvdvβ(ru)vr(t+ u, ru, Xu)dWu.

Taking expectations and applying the optional sampling theorem we arrive at
(8.8)

v(t, r, x) = Er,x

[∫ τ∧τn

0
e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du+e−

∫ τ∧τn
0 rvdvv(t+(τ ∧ τn), rτ∧τn , Xτ∧τn)

]
.

Using (2.3) and (2.4), Hölder inequality implies

Er,x

[∫ T−t

0
e−
∫ u
0 rvdv|Kru|du

]
<∞.

The majorant for the second term of (8.8) follows from Assumption 2.1 (details can be found in the
proof of (9.1) in Lemma 9.1). The dominated convergence theorem proves (3.4), since τn ↑ T − t
upon recalling that the boundary of I × R+ is assumed non-attainable by the process (rt, Xt).

It remains to verify assumptions of [11, Theorem 2.1]. Identifying X1
t = rt and X2

t = Xt, we
have,

β1,1(t, r, x) = β2(r), β1,2(t, r, x) = β2,1(t, r, x) = σρβ(r)x, β2,2(t, r, x) = σ2x2.

By Assumption 2.1, βi,j is Lipschitz for i, j = 1, 2 on every compact set in O. Indeed, it can be
directly verified for the CIR process. In case (ii) of Assumption 2.1 we use Lipschitz continuity of β.
The marginal distribution of the process (rt, Xt) has density with respect to the Lebesgue measure
(Remark B.1), so (t, rt, Xt) /∈ ∂C, Pr,x-a.s. for any t > 0. This verifies Assumption A.1 of [11, Thm.
2.1]. In the notation of Assumption A.2 in [11, Thm. 2.1], using (8.6), we have

1

2
L(t, r, x) = −rxvx(t, r, x)− α(r)vr(t, r, x)− vt(t, r, x) + rv(t, r, x)− 1{(t,r,x)∈D} rK.

Since v ∈ C1(O) and the function α(r) is continuous (see Assumption 2.1), L is continuous and
bounded on Kn \ ∂C. We finally have that Assumption A.3 in [11, Thm. 2.1] holds by Proposition
3.3. �

Proof of Proposition 3.10. The proof follows ideas originally developed in [39]. Assume there ex-
ists another continuous function c̃ that satisfies conditions (1) and (2) in the statement of this
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proposition. Define a function

ṽ(t, r, x) = Er,x

[∫ T−t

0
e−
∫ u
0 rvdvKru1{ru>c̃(t+u,Xu)}du+e−

∫ T−t
0 rvdv(K−XT−t)

+

]
, (t, r, x) ∈ O,

ṽ(T, r, x) = (K − x)+, (r, x) ∈ I × R+.

It is not difficult to prove that ṽ is continuous by the continuity of c̃ and of the flow (s, r, x) 7→
(rrs , X

r,x
s ). By the Markov property of (r,X), one can also check that

Ṽs :=

∫ s

0
e−
∫ u
0 rvdvKru1{ru>c̃(t+u,Xu)}du+ e−

∫ s
0 rvdvṽ(t+ s, rs, Xs), s ∈ [0, T − t],

is a continuous Pr,x-martingale. Hence, for any (t, r, x) ∈ O and any stopping time τ ≤ T − t, the
optional sampling theorem yields

(8.9) ṽ(t, r, x) = Er,x
[
Ṽτ
]

= Er,x

[∫ τ

0
e−
∫ u
0 rvdvKru1{ru>c̃(t+u,Xu)}du+ e−

∫ τ
0 rvdvṽ(t+ τ, rτ , Xτ )

]
,

which is analogous to the formula for v in (3.4).
For an easier exposition of the arguments of proof we proceed in steps. In the first four steps we

show the equality c̃(t, x) = c(t, x) for all (t, x) ∈ [0, T )×R+ such that c̃(t, x) ∈ I. Then, in the final
step we use monotonicity and continuity of c̃ and c to extend the equality to all (t, x) ∈ [0, T )×R+.

Step 1. We first show that ṽ(t, r, x) = (K − x)+ for any (t, r, x) ∈ O such that r ≥ c̃(t, x). Fix
(t̂, r̂, x̂) ∈ O such that r̂ > c̃(t̂, x̂) (the claim for r̂ = c̃(t̂, x̂) follows by the continuity of ṽ). Define a
stopping time

τ1 := inf{s ≥ 0 : rr̂s ≤ c̃(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

By the continuity of s 7→ c̃(t̂ + s,Xs) and s 7→ rs, and the fact that r and r are unattainable by
(rs), we have c̃(t̂ + τ1, Xτ1) ∈ I on {τ1 < T − t̂}. By assumption ṽ(t, c̃(t, x), x) = (K − x)+ and,
consequently, ṽ

(
t̂+τ1, c̃(t̂+τ1, Xτ1), Xτ1

)
= (K−Xτ1)+ since ṽ(T, r, x) = (K−x)+. In combination

with (8.9), this yields

ṽ(t̂, r̂, x̂) = Er̂,x̂

[∫ τ1

0
e−
∫ u
0 rvdvKrudu+ e−

∫ τ1
0 rvdv(K −Xτ1)+

]
,(8.10)

where we use that ru > c(t̂+ u,Xu) on {u < τ1}. Applying Tanaka’s formula to (r, x) 7→ (K − x)+

and taking expectation, we get

(K − x̂)+ = Er̂,x̂

[∫ τ1

0
e−
∫ u
0 rvdvKru1{Xu<K}du+ e−

∫ τ1
0 rvdv(K −Xτ1)+ +

1

2

∫ τ1

0
e−
∫ u
0 rvdvdLKu (X)

]
= Er̂,x̂

[∫ τ1

0
e−
∫ u
0 rvdvKrudu+ e−

∫ τ1
0 rvdv(K −Xτ1)+

]
,

where LK(X) is the local time of the process X at K. The local time LK(X) is null until τ1 since
ru > c̃(t + u,Xu) =⇒ Xu < K, recalling that c̃(t, x) = r̄ when x ≥ K. Compare the right-hand
side of the above expression to (8.10) to conclude that ṽ(t̂, r̂, x̂) = (K − x̂)+.

Step 2. The next step is to show that ṽ ≤ v for (t, r, x) ∈ O. Since we have already proved
ṽ(t, r, x) = (K − x)+ ≤ v(t, r, x) when r ≥ c̃(t, x), we take (t̂, r̂, x̂) ∈ O such that r̂ < c̃(t̂, x̂). Define
a stopping time

τ2 := inf{s ≥ 0 : rr̂s ≥ c̃(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

Since ru < c̃(t̂+ u,Xu) on {u < τ2}, we obtain from (8.9)

ṽ(t̂, r̂, x̂) = Er̂,x̂

[
e−
∫ τ2
0 rvdv(K −Xτ2)+

]
≤ v(t̂, r̂, x̂),

where the first equality is by ṽ
(
t̂ + τ2, c̃(t̂ + τ2, Xτ2), Xτ2

)
= (K − Xτ2)+ and the final inequality

holds by the definition of v.



THE AMERICAN PUT STOCHASTIC INTEREST RATE 31

Step 3. Now we show that c̃(t, x) ≤ c(t, x) for any (t, x) ∈ [0, T )× (0,K) such that c̃(t, x) ∈ I (it
is immediate for (t, x) ∈ [0, T )× [K,∞) as c̃(t, x) = c(t, x) = r). Arguing by contradiction, assume
that there exists (t̂, x̂) ∈ [0, T )× (0,K) such that I 3 c̃(t̂, x̂) > c(t̂, x̂). Let r̂ > c̃(t̂, x̂), and define

τ3 := inf{s ≥ 0 : rr̂s ≤ c(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

By (3.4) and (8.9), we have

v(t̂, r̂, x̂) = Er̂,x̂

[∫ τ3

0
e−
∫ u
0 rvdvKru1{ru>c(t̂+u,Xu)}du+ e−

∫ τ3
0 rvdvv(t̂+ τ3, rτ3 , Xτ3)

]
,

ṽ(t̂, r̂, x̂) = Er̂,x̂

[∫ τ3

0
e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du+ e−

∫ τ3
0 rvdvṽ(t̂+ τ3, rτ3 , Xτ3)

]
.

Since ṽ(t̂, r̂, x̂) = (K − x̂)+ = v(t̂, r̂, x̂), ru > c(t̂ + u,Xu) on {u < τ3}, and ṽ ≤ v, the above two
equations imply that

Er̂,x̂

[∫ τ3

0
e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du

]
≥ Er̂,x̂

[∫ τ3

0
e−
∫ u
0 rvdvKrudu

]
.

As the function c is non-negative, ru ≥ 0 on {u < τ3} and we conclude that

(8.11) Er̂,x̂

[∫ τ3

0
1{ru≤c̃(t̂+u,Xu)}du

]
= 0.

The dynamics of (r,X) is non-degenerate on I × R+, so the density of (ru, Xu) has a full support
(on I × R+) for u > 0 (this can be inferred by classical Gaussian bounds as those we use in (B.4)
in Appendix). Hence, by the continuity of c̃ and c, for a sufficiently small ε > 0,

Pr̂,x̂
(
c(t̂+ u,Xu) < ru < c̃(t̂+ u,Xu) for some u ∈ (0, ε)

)
> 0.

Paired with the continuity of trajectories of (r,X), it contradicts (8.11).
Step 4. Next, we prove c̃ = c at all points such that c̃ ∈ I. Arguing by contradiction, assume

c̃(t̂, x̂) < c(t̂, x̂) for some (t̂, x̂) ∈ [0, T ) × (0,K) such that c̃(t̂, x̂) ∈ I. Let r̂ ∈ (c̃(t̂, x̂), c(t̂, x̂)) and
define

τ4 := inf{s ≥ 0 : rr̂s ≥ c(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

By (3.4) and (8.9), we have

v(t̂, r̂, x̂) = Er̂,x̂

[
e−
∫ τ4
0 rvdvv(t̂+ τ4, rτ4 , Xτ4)

]
,

ṽ(t̂, r̂, x̂) = Er̂,x̂

[∫ τ4

0
e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du+ e−

∫ τ4
0 rvdvṽ(t̂+ τ4, rτ4 , Xτ4)

]
,

where in the first expression we used that 1{ru>c(t̂+u,Xu)} = 0 on {u < τ4}. Since c̃(t, x) ≤ c(t, x)

for (t, x) ∈ [0, T )× (0,K), we have ṽ(t̂+ τ4, rτ4 , Xτ4) = (K −Xτ4)+ = v(t̂+ τ4, rτ4 , Xτ4) by step 1.
Then recalling that ṽ ≤ v and comparing the two equations above give us

Er̂,x̂

[∫ τ3

0
e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du

]
≤ 0.

This is a contradiction since by the continuity of (r,X) and c̃ there is a random variable η > 0 such
that

ru(ω) > c̃(t̂+ u,Xu(ω)) for all u ∈ [0, η(ω)).

Step 5. Here we show that c̃ = c on [0, T )×R+. Let (tn, xn) be a sequence such that c̃(tn, xn) ∈ I
and (tn, xn) → (t0, x0) with c̃(t0, x0) = r̄ (respectively c̃(t0, x0) = 0). Since c̃(tn, xn) = c(tn, xn)
for all n’s, by the four steps above, by continuity we also get c(t0, x0) = c̃(t0, x0) = r̄ (respectively
c(t0, x0) = c̃(t0, x0) = 0). Then, by the monotonicity of both c and c̃ we get c(t, x) = c̃(t, x) for all
(t, x) ∈ [0, t0]× [x0,∞) (respectively (t, x) ∈ [t0, T ]× [0, x0]). This implies, in particular, that

{(t, x) : c̃(t, x) ∈ I} = {(t, x) : c(t, x) ∈ I},
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which concludes the proof. �

Proof of Corollary 3.11. We can repeat the same arguments as in the proof of Proposition 3.10,
always using x > b(t, r) ⇐⇒ r < c(t, x) to fall back into the exact set-up of steps 1–4 therein. �

9. Hedging strategy

We start this section with an auxiliary lemma whose assertions are used to show admissibility of
the hedging strategy. Estimate (9.1) is also used in the proof of Proposition 3.9.

Lemma 9.1. For any compact set K ⊂ I × R+, and p ∈ [1, 2], we have

sup
(r,x)∈K

sup
t∈[0,T ]

Er,x
[

sup
0≤s≤T−t

e−
∫ s
0 ruduv(t+ s, rs, Xs)

]
<∞,(9.1)

sup
(r,x)∈K

sup
s∈[0,T ]

Er,x
[
e−p

∫ s
0 rudu

∣∣vx(t+ s, rs, Xs)
∣∣pXp

s

]
<∞,(9.2)

sup
(r,x)∈K

sup
s∈[0,T ]

Er,x
[
e−2

∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs)

]
<∞.(9.3)

Proof. From (2.6) we obtain an upper bound for the function v:

(9.4) v(t, r, x) ≤ KEr
[

sup
0≤s≤T−t

e−
∫ s
0 rudu

]
.

Using this bound, we have Pr,x-a.s.

e−
∫ s
0 ruduv(t+ s, rs, Xs) ≤ e−

∫ s
0 ruduKErs

[
sup

0≤u≤T−t−s
e−
∫ u
0 rvdv

]
= e−

∫ s
0 ruduKEr

[
sup

s≤u≤T−t
e−
∫ u
s rvdv

∣∣∣Fs]
≤ KEr

[
sup

0≤u≤T−t
e−
∫ u
0 rvdv

∣∣∣Fs] ≤ KEr
[

sup
0≤u≤T

e−
∫ u
0 rvdv

∣∣∣Fs],
where in the second equality we employ the Markov property of r. By Doob’s maximal inequality

applied to the martingale Ys = Er
[

sup0≤u≤T e
−
∫ u
0 rvdv

∣∣∣Fs], we conclude

sup
(r,x)∈K

sup
t∈[0,T ]

Er,x
[

sup
0≤s≤T−t

e−
∫ s
0 ruduv(t+ s, rs, Xs)

]
≤ sup

(r,x)∈K
sup
t∈[0,T ]

K Er
[

sup
0≤s≤T−t

Ys

]
≤ sup

(r,x)∈K
K Er

[
sup

0≤s≤T
Ys

]
≤ sup

(r,x)∈K
2K

(
Er[Y

2
T ]
)1/2

= sup
(r,x)∈K

2K
(
Er
[

sup
0≤u≤T

e−2
∫ u
0 rvdv

])1/2
≤ 2K(C1)1/2,

where C1 is the constant from (2.3). This proves (i).
We now address (9.2). We have

e−p
∫ s
0 rudu

∣∣vx(t+ s, rs, Xs)
∣∣pXp

s =
∣∣vx(t+ s, rs, Xs)

∣∣pxpepσBs− p2σ2s ≤ xpepσBs−
p
2
σ2s,

where we use −1 ≤ vx ≤ 0 in the last inequality, which follows from (7.3). From here, (9.2) is
immediate.

It remains to prove (9.3). First we consider the case of Assumption 2.1(ii). From (5.2), (5.3) and
(5.4), we deduce

(9.5)
(
vr(t, r, x)

)2 ≤ c1 Er
[

sup
0≤s≤T−t

e−2
∫ s
0 rudu

]
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for some constant c1 > 0 depending only on T and the coefficients of (2.2) (notice in particular that
the expected value in the right-hand side above comes from the constant C1 in (5.3)). Hence

e−2
∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs) ≤ e−2

∫ s
0 ruduc1 Ers

[
sup

0≤u≤T−t−s
e−2

∫ u
0 rvdv

]
β2(rs)

≤ c1 Er
[

sup
0≤u≤T−t

e−2
∫ u
0 rvdv

∣∣∣Fs]β2(rs),

where the last inequality is by the same argument as in the proof of (9.1). We take expectation
of both sides and apply Hölder inequality with q = p′/2 (p′ > 2 is defined in Assumption 2.1) and
q′ = q/(q − 1)

Er
[
e−2

∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs)

]
≤ c1

(
Er
[
Er
[

sup
0≤u≤T−t

e−2
∫ u
0 rvdv

∣∣∣Fs]q])1/q(
Er[β

2q′(rs)]
)1/q′

≤ c1

(
Er
[

sup
0≤u≤T−t

e−p
′ ∫ u

0 rvdv
])1/q(

Er[β
2q′(rs)]

)1/q′
≤ c1C

1/q
1

(
Er[β

2q′(rs)]
)1/q′

,

where the second inequality follows from Jensen’s inequality and C1 is the constant from (2.3). Let
L be the Lipschitz constant for β. Then, using triangle inequality for norms,(

Er[(β(rs))
2q′ ]
)1/q′

≤
(
Er
[∣∣β(0) + L|rs|

∣∣2q′])1/q′

=
((

Er
[∣∣β(0) + L|rs|

∣∣2q′])1/2q′)2

≤
(
β(0) + L

(
Er
[
|rs|2q

′])1/2q′)2
≤
(
β(0) + L

(
C2(1 + |r|2q′

)1/2q′)2
,

where the last inequality follows from (2.4) and 2q′ = p′ ≥ 2. Combining the above estimates proves
(9.3).

We address the case when r follows the CIR dynamics. From the non-negativity of the process

r and from (9.5) we obtain that
(
vr(t, r, x)

)2 ≤ c1 for any (t, r, x) ∈ O. Hence, we write

Er,x
[
e−2

∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs)

]
≤ c1γ

2Er[|rs|],

where we used the explicit form of β. It remains to recall (2.4) to conclude (9.3). �

Proof of Proposition 3.12. The admissibility condition can be equivalently written as

(9.6)

∫ T

0
e−2

∫ s
0 rudu

(
φ(1)
s σXs

)2
ds+

∫ T

0
e−2

∫ s
0 rudu

(
φ(2)
s β(rs)Pr(s, rs)

)2
ds <∞, Pr,x-a.s.

Estimates in Lemma 9.1 imply

Er,x
[ ∫ T

0
e−2

∫ s
0 rudu

(
φ(1)
s σXs

)2
ds+

∫ T

0
e−2

∫ s
0 rudu

(
φ(2)
s β(rs)Pr(s, rs)

)2
ds
]
<∞,

which is a stronger condition than (9.6). The fact that the portfolio replicates the option follows
from the construction and (3.15). �
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Appendices

Appendix A. Convergence of stopping times

In this appendix we provide a self-contained exposition around the continuity of hitting/entry
times to certain domains in O. Similar results can be found in many textbooks, e.g., [17, p. 32-40],
[9, Chapter 1].

Throughout this section, K denotes a subset of O that is closed in O, i.e., K∩O = K. Introduce
the hitting time to K, denoted σK, and the entry time to the interior of K, denoted σ̊K. That is, for
(t, r, x) ∈ [0, T ]× I × R+, we set Pr,x-a.s.

(A.1)
σK := inf{s > 0 : (t+ s, rs, Xs) ∈ K} ∧ (T − t),
σ̊K := inf{s ≥ 0 : (t+ s, rs, Xs) ∈ int(K)} ∧ (T − t).

The above definition differs from (6.5) since {T}×I ×R+ ⊂ D guaranteeing that σD ≤ T − t. Both
σK and σ̊K are stopping times with respect to the augmentation of the filtration generated by the
Brownian motions (B,W ). It is immediate to see that

σK ≤ σ̊K, P-a.s.(A.2)

We will often write σK(t, r, x) and σ̊K(t, r, x) to indicate the starting point of the process.
Denote by A the complement of K in O: A := Kc ∩ O (which is an open set). When we write

∂A we mean the boundary of A in [0, T ]× I × R+. We have two assumptions

Assumption A.1 (Regularity). For (t0, r0, x0) ∈ ∂A, we have

Pt0,r0,x0(σK > 0) = Pt0,r0,x0 (̊σK > 0) = 0.

Assumption A.2. For any sequence (rn, xn)n≥1 converging to (r, x) ∈ I ×R+ as n→∞, it holds
that

(A.3) lim
n→+∞

sup
0≤t≤T

(
|rrnt − rrt |+ |X

rn,xn
t −Xr,x

t |
)

= 0, P-a.s.

Note that Assumption A.1 necessitates that K = int(K) ∩ O. It also enables establishing a
connection between σK and σ̊K.

Lemma A.3. Under Assumption A.1, Pt,r,x(σK = σ̊K) = 1 for all (t, r, x) ∈ O.

Proof. The equality is trivial for (t, r, x) ∈ int(K). Take (t, r, x) in its complement, i.e., in A ∩ O.
Since (A.2) holds, we only need to show that Pt,r,x(σK < σ̊K) = 0. Let us argue by contradiction
and assume that Pt,r,x(σK < σ̊K) > 0. There exists δ > 0 such that Pt,r,x(̊σK ≥ σK + δ) > 0.
Denoting by θt the shift operator, by the strong Markov property we get

Pt,r,x(̊σK ≥ σK + δ) =Et,r,x
[
Et,r,x

(
1{σK+σ̊K◦θσK≥σK+δ}

∣∣∣FσK)]
=Et,r,x

[
Pt+σK,rσK ,XσK (̊σK ≥ δ)

]
= 0,

where the last equality follows by observing that (t+σK, rσK , XσK) ∈ ∂A, Pt,r,x-a.s. and Assumption
A.1. �

Lemma A.4. Let O 3 (tn, rn, xn) → (t, r, x) ∈ O as n → ∞. Under Assumption A.2, it holds
P-a.s.

lim sup
n→∞

σ̊K(tn, rn, xn) ≤ σ̊K(t, r, x).

Proof. For simplicity, we denote σ̊n := σ̊K(tn, rn, xn) and σ̊K := σ̊K(t, r, x). For P-a.e. ω ∈ Ω we
have by (A.3)

(A.4) (tn + s, rrns , X
rn,xn
s )(ω)→ (t+ s, rrs , X

r,x
s )(ω), s ∈ [0, T − t].
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Fix ω ∈ Ω in the set of P-full measure for which the above holds. If σ̊K(ω) = T − t then the
result is obvious because σ̊n(ω) ≤ T − tn. Assume σ̊K(ω) < T − t. Take any δ < T − t such that
σ̊K(ω) < δ. By the continuity of paths and the openness of int(K), there is δ′ ∈ (̊σK(ω), δ) such that
(t + δ′, rrδ′ , X

r,x
δ′ )(ω) ∈ int(K). From (A.4) and the openness of int(K), (tn + δ′, rrnδ′ , X

rn,xn
δ′ )(ω) ∈

int(K) for all sufficiently large n, so lim supn→∞ σ̊n(ω) ≤ δ′. As the above argument holds for any
δ > σ̊K(ω) and for a.e. ω ∈ Ω, we obtain the claim. �

Lemma A.5. Let (tn, rn, xn)n≥1 be a sequence converging to (t, r, x) ∈ O as n→∞. Then, under
Assumptions A.1 and A.2,

lim inf
n→∞

σK(tn, rn, xn) ≥ σK(t, r, x), P-a.s.(A.5)

Proof. For y, z ∈ O we denote by d(y, z) their Euclidean distance and by d(y, ∂A) = inf{d(y, z) , z ∈
∂A}. Denote σn := σK(tn, rn, xn) and σK := σK(t, r, x). To simplify notation we also set

ζs := (t+ s, rrs , X
r,x
s ) and ζns := (tn + s, rrns , X

rn,xn
s ).

Fix ω ∈ Ω in a set of full P-measure on which trajectories of ζ are continuous and the limit (A.3)
holds. If σK(ω) = 0 then (A.5) holds trivially. Otherwise, we must have (t, r, x) ∈ A by Assumption
(A.1), so d(ζ0(ω), ∂A) > 0 since A is open. For 0 < ε < d(ζ0(ω), ∂A), define

δε = inf{s ∈ [0, T − t] : d(ζs(ω), ∂A) ≤ ε}.
Using the triangle inequality we get d(ζns (ω), ∂A))+d(ζns (ω), ζs(ω)) > ε for all s ∈ [0, δε]. Thanks to
Assumption A.2, d(ζns (ω), ζs(ω)) < ε/2 for all s ∈ [0, δε] and all sufficiently large n, so d(ζns (ω), ∂A)) ≥
ε/2 for all s ∈ [0, δε] and all sufficiently large n. This gives

lim inf
n→∞

σn(ω) ≥ δε.

Using the continuity of t 7→ ζt(ω) and the fact that ζσK(ω) ∈ ∂A, we have limε→0 δε = σK(ω). As
this holds for a.e. ω ∈ Ω, the proof of (A.5) is complete. �

Lemma A.3, A.4 and A.5 imply

Proposition A.6. Let (tn, rn, xn)n≥1 be a sequence converging to (t, r, x) ∈ O as n→∞. Then

(A.6)
lim
n→∞

σ̊K(tn, rn, xn) = σ̊K(t, r, x), P-a.s.

lim
n→∞

σK(tn, rn, xn) = σK(t, r, x), P-a.s.

Appendix B. Proof of Proposition 6.1

Fix (t0, r0, x0) ∈ ∂C and define R := [r0, r] × [0, x0], where we also recall that I = (r, r). Since
t 7→ c(t, x) is non-increasing, it is immediate to see that [t0, T ] × R ⊆ D. Recalling the notation
introduced in (A.1), set

σ̊R(r0, x0) := inf{s ≥ 0 : (rr0s , X
r0,x0
s ) ∈ int(R)}.

We have σ̊R(r0, x0) ≥ σ̊D(t0, r0, x0), P-a.s., and σ̊R(r0, x0) ≥ σD(t0, r0, x0) by the continuity of the
process (r,X). From now on we omit in the notation the dependence on (t0, r0, x0) since the initial
point is fixed throughout the proof.

Take a compact ball K ⊂ I×R+ centred at (r0, x0). Let Σ(r, x) denote the matrix of the diffusion
coefficient for (2.1)–(2.2), i.e.

Σ(r, x) :=
1

2

(
σ2x2 ρσxβ(r)

ρσxβ(r) β2(r)

)
.

Since the correlation coefficient ρ ∈ (−1, 1), there is γ = γK > 0 such that

1

γ
‖z‖2 ≤ 〈Σ(r, x)z, z〉 ≤ γ‖z‖2, z ∈ R2 \ {0}, (r, x) ∈ K,(B.1)
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where 〈·, ·〉 denotes the scalar product in R2 and ‖ · ‖ the corresponding norm.

Define a new process (r̃, X̃) with the dynamics defined on R2

d X̃t = µK(r̃t, X̃t)dt+ σK(X̃t)dBt, X̃0 = x0(B.2)

d r̃t = αK(r̃t)dt+ βK(r̃t)dWt, r̃0 = r0(B.3)

such that the coefficients coincide with the coefficients of (2.1)-(2.2) on K, are Lipschitz continuous
on R2 and satisfy the uniform ellipticity condition (B.1) with γ on R2. Denoting τK := inf{t ≥ 0 :

(rt, Xt) /∈ int(K)} and τ̃K := inf{t ≥ 0 : (r̃t, X̃t) /∈ int(K)}, by the uniqueness of solutions for SDEs
we get indistinguishable stopped paths:

(rt∧τK , Xt∧τK)t≥0 = (r̃t∧τ̃K , X̃t∧τ̃K)t≥0 Pr0,x0-a.s.

The uniform ellipticity condition (B.1) on R2 implies that the process (r̃, X̃) admits a transition
density p̃(t, (r, x), (r′, x′)) which satisfies the following Gaussian bound (see, e.g., [4, 18]): there
exists m > 0 and Λ > 0 such that

(B.4) p̃(t, (r, x), (r′, x′)) ≥ mt−1 exp

(
−Λ

(r′ − r)2 + (x′ − x)2

t

)
.

Let R′′ be a closed cone with vertex (r0, x0) and non-empty interior contained in
[
(r0,∞) ×

(−∞, x0)
]
∪ {r0, x0} . Put R′ = R′′ ∩ (I × R+). Denote by σ̊′R the entry time of (r,X) to int(R′)

and by σ̊′′R the entry time of (r̃, X̃) to int(R′′). The next estimate relies on analogous results for
multi-dimensional Brownian motion ([29, Thm. 4.2.9]); in particular the second inequality below
follows from (B.4):

Pr0,x0 (̊σ′′R ≤ t) ≥ Pr0,x0((r̃t, X̃t) ∈ R′′) ≥
m

t

∫
R′′

exp

(
−Λ

(r − r0)2 + (x− x0)2

t

)
dr dx.

We change variables to y := (r − r0)/
√
t and z := (x− x0)/

√
t and use that R′′ is invariant under

this transformation to obtain

Pr0,x0 (̊σ′′R ≤ t) ≥ 2πm

∫
R′′

1

2π
e−Λ(y2+z2)dy dz =: q > 0.(B.5)

For any t > 0, since R′ ⊂ R we have

Pr0,x0 (̊σR ≤ t) ≥Pr0,x0 (̊σ′R ≤ t) ≥ Pr0,x0 (̊σ′R ≤ t, τK > t)

=Pr0,x0 (̊σ′′R ≤ t, τ̃K > t) ≥ Pr0,x0 (̊σ′′R ≤ t)− Pr0,x0(τ̃K ≤ t) ≥ q − Pr0,x0(τ̃K ≤ t),
where the last inequality is by (B.5). As t ↓ 0, we have Pr0,x0(τ̃K ≤ t) → 0 and Pr0,x0 (̊σR ≤
t) → Pr0,x0 (̊σR = 0), which implies that Pr0,x0 (̊σR = 0) ≥ q > 0. By the Blumenthal 0 − 1 law
[29, Thm. 2.7.17] we obtain Pr0,x0 (̊σR = 0) = 1. Recalling that Pt0,r0,x0 (̊σR ≥ σ̊D) = 1, and
Pt0,r0,x0 (̊σD ≥ σD) = 1, we conclude Pt0,r0,x0 (̊σD = 0) = Pt0,r0,x0(σD = 0) = 1. �

Remark B.1. It is worth noticing that the arguments above show the existence of the transition

density of the process (r̃, X̃) for any compact set K ⊂ I × R+ such that K = int(K). This implies
that for each t ∈ [0, T ] also the law of (rt, Xt) is absolutely continuous with respect to the Lebesgue
measure on I×R+, when the boundary of I×R+ is non-attainable by (rt, Xt). Indeed, let N ⊂ I×R+

be such that λ(N) = 0, with λ denoting the Lebesgue measure on R2. Let K ⊂ I ×R+ be a compact

set such that K = int(K). Then by the same construction as above

(B.6)

Pr0,x0
(
(rt, Xt) ∈ N

)
= Pr0,x0

(
(rt, Xt) ∈ N, t ≤ τK

)
+ Pr0,x0

(
(rt, Xt) ∈ N, t > τK

)
= Pr0,x0

(
(r̃t, X̃t) ∈ N, t ≤ τ̃K

)
+ Pr0,x0

(
(rt, Xt) ∈ N, t > τK

)
≤ Pr0,x0

(
(r̃t, X̃t) ∈ N

)
+ Pr0,x0

(
τK < t

)
= Pr0,x0

(
τK < t

)
,
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where the final equality uses that the transition law of (r̃, X̃) is absolutely continuous with respect
to λ. Now, letting K ↑ I × R+, using that 0 and +∞ are not attainable by X and r and r are not
attainable by r, we can make Pr0,x0

(
τK < t

)
arbitrarily small, which proves the claim.

Appendix C. Derivation of (4.4)-(4.5)

We start by introducing the following notation (we suppress dependence on r and x for the sake
of simplicity):
(C.1)

d1(t, T ) : =
log
(
K P (t,T )

x

)
+ γ1(t,T )

2√
γ1(t, T )

, d2(t, T ) := d1(t, T )−
√
γ1(t, T ),

q(t, u) : = e−(u−t)κr + θ(1− e−(u−t)κ)− β2

2
g(κ, u− t)2,

φ(t, u, y; b) : =
log
(
P (t,u)
x b

(
u, q(t, u) + y

√
γ2(t, u)

))
+ γ1(t,u)

2 −
√
γ1(t, u)ρ̃(t, u)y√

(1− ρ̃(t, u)2)γ1(t, u)
,

µ(t, u) : = rg(κ, u− t) + θ
(
u− t− g(κ, u− t)

)
,

γ1(t, u) : = (u− t)σ2 +
2ρσβ

κ

(
u− t− g(κ, u− t)

)
+
β2

κ

(
u− t− 2g(κ, u− t) + g(2κ, u− t)

)
,

γ2(t, u) : = β2g(2κ, u− t),

ρ̃(t, u) : =
ρσβg(κ, u− t) + β2

2 g(κ, u− t)2√
γ1(t, u)γ2(t, u)

,

g(a, u) : =
1− e−au

a
.

Lemma C.1. For a measurable bounded function ϕ : (0,∞)× R→ R and s ≥ t, the function

u(t, s, r, x) = Er,x
[
e−
∫ s−t
0 ruduϕ(Xs−t, rs−t)

]
has an explicit representation

(C.2) u(t, s, r, x) = e−µ(t,s)+ 1
2
β2
∫ s
t g(κ,s−u)2du

∫
R2

ϕ
(
xeL(t,s)+

√
γ1(t,s))z, q(t, s) + y

√
γ2(t, s)

)
e
− 1

2(1−ρ̃(t,s)2)(z
2+y2−2ρ̃(t,s)zy) 1

2π
√

1− ρ̃(t, s)2
dzdy,

where

L(t, s) = µ(t, s)− σ2

2
(s− t)−

∫ s

t

(
β2g(κ, s− u)2 + ρσg(κ, s− u)

)
du.

We defer the proof until the end of this section and apply the above lemma to derive formulae
for P (t, T ), ve and vp. Taking ϕ ≡ 1 in (C.2), we have

(C.3) P (t, s) = Er
[
e−
∫ s−t
0 rsds

]
= e−µ(t,s)+ 1

2
β2
∫ s
t g(κ,s−u)2du = e−µ(t,s)+ β2

2κ2
(s−t−2g(κ,s−t)+g(2κ,s−t)).

This also implies that

eL(t,s) = eµ(t,s)− 1
2

∫ s
t β

2g(κ,s−u)2du e−
σ2

2
(s−t)− 1

2

∫ s
t β

2g(κ,s−u)2du−
∫ s
t ρσg(κ,s−u)du =

1

P (t, s)
e−

γ1(t,s)
2 .

Insert this and (C.3) into (C.2) and let

z = ρ̃(t, s)y +
√

1− ρ̃(t, s)2ẑ.
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This transforms the integral in (C.2) into an integral of two independent Gaussian variables

(C.4)

u(t, s, r, x) = P (t, s)

∫
R2

ϕ

(
x

P (t, s)
e
− γ1(t,s)

2
+
√
γ1(t,s)

(
ρ̃(t,s)y+

√
1−ρ̃(t,s)2ẑ

)
, q(t, s) +

√
γ2(t, s)y

)
e−

1
2

(z2+y2) 1

2π
dẑdy.

Now, letting ϕ(x, r) = (K − x)+ and ϕ(x, r) = Kr1{x<b(s,r)}, we obtain (4.4)-(4.5).

Proof of Lemma C.1. The proof follows the lines of similar computations in the literature, see [7]
and [16]. Using the explicit expression of r in (4.2) and stochastic Fubini’s theorem [41, Theorem
IV.64], we compute∫ s

t
rudu = g(κ, s− t)rt + θ (s− t− g(κ, s− t)) + β

∫ s

t
g(κ, s− u)dWu(C.5)

= µ(t, s) + β

∫ s

t
g(κ, s− u)dWu.

Define Zt implicitly by

dBt = ρdWt +
√

1− ρ2dZt.

Then Z is a Brownian motion that is independent of W . Using the explicit expression of X and
(C.5), we write u as
(C.6)

u(t, s, r, x) = Er

[
e−µ(t,s)−β

∫ s
t g(κ,s−u)dWuϕ

(
x exp

{
µ(t, s)− σ2

2
(s− t)

+ β

∫ s−t

0
g(κ, s− t− u)dWu +

∫ s−t

0
σ(ρdWu +

√
1− ρ2dZu)

}
, rs−t

)]
.

Define a new measure P̃ by the Radon-Nikodym density

dP̃

dP
:= e−β

∫ s−t
0 g(κ,s−t−u)dWu− 1

2

∫ s−t
0 β2g(κ,s−t−u)2du.

The process W̃ given by

dW̃t = dWt + βg(κ, s− t)dt

is a Brownian motion under P̃. We write the explicit formula (C.5) for r in terms of W̃ :

rs = rte
−(s−t)κ + θ(1− e−(s−t)κ)− β2

2
g(κ, s− t)2 + β

∫ s

t
e−(s−u)κdW̃u.

Denoting by Ẽ the expectation under P̃ , we obtain from (C.6)

(C.7) u(t, s, r, x) = e−µ(t,s)+ 1
2
β2
∫ s
t g(κ,s−u)2duẼ

[
ϕ
(
xeL(t,s)+A(t,s), q(t, s) + Y (t, s)

)]
,

where

A(t, s) : =

∫ s−t

0
(ρσ + βg(κ, s− t− u))dW̃u +

∫ s−t

0
σ
√

1− ρ2dZu,

Y (t, s) : = β

∫ s−t

0
e−(s−t−u)κdW̃u.
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For each fixed t < s, the random vector (A, Y ) is multivariate Gaussian under P̃ with zero mean,
and variance and covariance given by

V ar
P̃
(A(t, s)) = γ1(t, s), V ar

P̃
(Y (t, s)) = γ2(t, s),

Cov
P̃
(A(t, s), Y (t, T )) = ρ̃(t, s)

√
γ1(t, s)γ2(t, s).

Hence, we have an explicit integral representation of (C.7)
(C.8)

u(t, s, r, x) = = e−µ(t,s)+ 1
2
β2
∫ s
t g(κ,s−u)2du

∫
R2

ϕ
(
xeL(t,s)+z, q(t, s) + y

)
× e
− 1

2(1−ρ̃(t,s)2)

(
z2

γ1(t,s)
+ y2

γ2(t,s)
− 2ρ̃(t,s)zy√

γ1(t,s)γ2(t,s)

)
1

2π
√
γ1(t, s)γ2(t, s)

√
1− ρ̃(t, s)2

dzdy.

A change of variable yields (C.2). �
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