54 research outputs found

    The Milky Way bar and bulge revealed by APOGEE and Gaia EDR3

    Get PDF
    We investigate the inner regions of the Milky Way using data from APOGEE and Gaia EDR3. Our inner Galactic sample has more than 26 500 stars within |XGal| < 5 kpc, |YGal| < 3.5 kpc, |ZGal| < 1 kpc, and we also carry out the analysis for a foreground-cleaned subsample of 8000 stars that is more representative of the bulge–bar populations. These samples allow us to build chemo-dynamical maps of the stellar populations with vastly improved detail. The inner Galaxy shows an apparent chemical bimodality in key abundance ratios [α/Fe], [C/N], and [Mn/O], which probe different enrichment timescales, suggesting a star formation gap (quenching) between the high- and low-α populations. Using a joint analysis of the distributions of kinematics, metallicities, mean orbital radius, and chemical abundances, we can characterize the different populations coexisting in the innermost regions of the Galaxy for the first time. The chemo-kinematic data dissected on an eccentricity–|Z|max plane reveal the chemical and kinematic signatures of the bar, the thin inner disc, and an inner thick disc, and a broad metallicity population with large velocity dispersion indicative of a pressure-supported component. The interplay between these different populations is mapped onto the different metallicity distributions seen in the eccentricity–|Z|max diagram consistently with the mean orbital radius and Vφ distributions. A clear metallicity gradient as a function of |Z|max is also found, which is consistent with the spatial overlapping of different populations. Additionally, we find and chemically and kinematically characterize a group of counter-rotating stars that could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disc that migrated into the bulge. Finally, based on 6D information, we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpc, with a broad dispersion of metallicity. Even stars with a high probability of belonging to the bar show chemical bimodality in the [α/Fe] versus [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant, distinct chemical abundance ratio signature

    From the bulge to the outer disc : StarHorse stellar parameters, distances, and extinctions for stars in APOGEE DR16 and other spectroscopic surveys

    Get PDF
    We combine high-resolution spectroscopic data from APOGEE-2 survey Data Release 16 (DR16) with broad-band photometric data from several sources as well as parallaxes from Gaia Data Release 2 (DR2). Using the Bayesian isochrone-fitting code StarHorse, we derived the distances, extinctions, and astrophysical parameters for around 388 815 APOGEE stars. We achieve typical distance uncertainties of ∼6% for APOGEE gi ants, ∼2% for APOGEE dwarfs, and extinction uncertainties of ∼0.07 mag, when all photometric information is available, and ∼0.17 mag if optical photometry is missing. StarHorse uncertainties vary with the input spectroscopic catalogue, available photometry, and parallax uncertainties. To illustrate the impact of our results, we show that thanks to Gaia DR2 and the now larger sky coverage of APOGEE-2 (including APOGEE-South), we obtain an extended map of the Galactic plane. We thereby provide an unprecedented coverage of the disc close to the Galactic mid-plane (|ZGal| < 1 kpc) from the Galactic centre out to RGal ∼ 20 kpc. The improvements in statistics as well as distance and extinction uncertainties unveil the presence of the bar in stellar density and the striking chemical duality in the innermost regions of the disc, which now clearly extend to the inner bulge. We complement this paper with distances and extinctions for stars in other public released spectroscopic surveys: 324 999 in GALAH DR2, 4 928 715 in LAMOST DR5, 408 894 in RAVE DR6, and 6095 in GES DR3

    Dissecting stellar chemical abundance space with t-SNE

    Get PDF
    In the era of large-scale Galactic astronomy and multi-object spectroscopic stellar surveys, the sample sizes and the number of available stellar chemical abundances have reached dimensions in which it has become difficult to process all the available information in an effective manner. In this paper we demonstrate the use of a dimensionality-reduction technique (t-distributed stochastic neighbour embedding; t-SNE) for analysing the stellar abundance-space distribution. While the non-parametric non-linear behaviour of this technique makes it difficult to estimate the significance of any abundance-space substructure found, we show that our results depend little on parameter choices and are robust to abundance errors. By reanalysing the high-resolution high-signal-to-noise solar-neighbourhood HARPS-GTO sample with t-SNE, we find clearer chemical separations of the high- and low-[α/Fe] disc sequences, hints for multiple populations in the high-[α/Fe] population, and indications that the chemical evolution of the high-[α/Fe] metal-rich stars is connected with the super-metal-rich stars. We also identify a number of chemically peculiar stars, among them a high-confidence s-process-enhanced abundance-ratio pair (HD 91345/HD 126681) with very similar ages and v X and v Y velocities, which we suggest have a common birth origin, possibly a dwarf galaxy. Our results demonstrate the potential of abundance-space t-SNE and similar methods for chemical-tagging studies with large spectroscopic surveys

    The fourteenth data release of the Sloan Digital Sky Survey : first spectroscopic data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as “The Cannon”; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Kinematics with Gaia DR2 : the force of a dwarf

    Get PDF
    We use Gaia DR2 astrometric and line-of-sight velocity information combined with two sets of distances obtained with a Bayesian inference method to study the 3D velocity distribution in the Milky Way disc. We search for variations in all Galactocentric cylindrical velocity components (Vϕ, VR, and Vz) with Galactic radius, azimuth, and distance from the disc mid-plane. We confirm recent work showing that bulk vertical motions in the R–z plane are consistent with a combination of breathing and bending modes. In the x–y plane, we show that, although the amplitudes change, the structure produced by these modes is mostly invariant as a function of distance from the plane. Comparing to two different Galactic disc models, we demonstrate that the observed patterns can drastically change in short time intervals, showing the complexity of understanding the origin of vertical perturbations. A strong radial VR gradient was identified in the inner disc, transitioning smoothly from 16 km s−1 kpc−1 at an azimuth of 30° < ϕ < 45° ahead of the Sun-Galactic centre line to −16 km s−1 kpc−1 at an azimuth of −45° < ϕ < −30° lagging the solar azimuth. We use a simulation with no significant recent mergers to show that exactly the opposite trend is expected from a barred potential, but overestimated distances can flip this trend to match the data. Alternatively, using an N-body simulation of the Sagittarius dwarf–Milky Way interaction, we demonstrate that a major recent perturbation is necessary to reproduce the observations. Such an impact may have strongly perturbed the existing bar or even triggered its formation in the last 1–2 Gyr

    Estimating stellar birth radii and the time evolution of Milky Way’s ISM metallicity gradient

    Get PDF
    We present a semi-empirical, largelymodel-independent approach for estimatingGalactic birth radii, rbirth, for Milky Way disc stars. The technique relies on the justifiable assumption that a negative radial metallicity gradient in the interstellar medium (ISM) existed for most of the disc lifetime. Stars are projected back to their birth positions according to the observationally derived age and [Fe/H] with no kinematical information required. Applying our approach to the AMBRE:HARPS and HARPS–GTO local samples, we show that we can constrain the ISM metallicity evolution with Galactic radius and cosmic time, [Fe/H]ISM(r, t), by requiring a physically meaningful rbirth distribution. We find that the data are consistent with an ISM radial metallicity gradient that flattens with time from ~− 0.15 dex kpc−1 at the beginning of disc formation, to its measured present-day value (−0.07 dex kpc−1). We present several chemokinematical relations in terms of mono-rbirth populations. One remarkable result is that the kinematically hottest stars would have been born locally or in the outer disc, consistent with thick disc formation from the nested flares of mono-age populations and predictions from cosmological simulations. This phenomenon can be also seen in the observed age–velocity dispersion relation, in that its upper boundary is dominated by stars born at larger radii. We also find that the flatness of the local age–metallicity relation (AMR) is the result of the superposition of the AMRs of mono-rbirth populations, each with a well-defined negative slope. The solar birth radius is estimated to be 7.3 ± 0.6 kpc, for a current Galactocentric radius of 8 kpc

    Chemical trends in the Galactic halo from APOGEE data

    Get PDF
    The galaxy formation process in the cold dark matter scenario can be constrained from the analysis of stars in the Milky Way’s halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic Centre (r) and iron abundance ([M/H]), in the range 5 r 30 kpc and −2.5 15 kpc and [M/H] > −1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-α stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces

    The Milky Way bar and bulge revealed by APOGEE and Gaia EDR3

    Get PDF
    We investigate the inner regions of the Milky Way using data from APOGEE and Gaia EDR3. Our inner Galactic sample has more than 26 500 stars within |XGal|< 5 kpc, |YGal|< 3.5 kpc, |ZGal|< 1 kpc, and we also carry out the analysis for a foreground-cleaned subsample of 8000 stars that is more representative of the bulge-bar populations. These samples allow us to build chemo-dynamical maps of the stellar populations with vastly improved detail. The inner Galaxy shows an apparent chemical bimodality in key abundance ratios [α/Fe], [C/N], and [Mn/O], which probe different enrichment timescales, suggesting a star formation gap (quenching) between the high- and low-α populations. Using a joint analysis of the distributions of kinematics, metallicities, mean orbital radius, and chemical abundances, we can characterize the different populations coexisting in the innermost regions of the Galaxy for the first time. The chemo-kinematic data dissected on an eccentricity-|Z|max plane reveal the chemical and kinematic signatures of the bar, the thin inner disc, and an inner thick disc, and a broad metallicity population with large velocity dispersion indicative of a pressure-supported component. The interplay between these different populations is mapped onto the different metallicity distributions seen in the eccentricity-|Z|max diagram consistently with the mean orbital radius and Vφ distributions. A clear metallicity gradient as a function of |Z|max is also found, which is consistent with the spatial overlapping of different populations. Additionally, we find and chemically and kinematically characterize a group of counter-rotating stars that could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disc that migrated into the bulge. Finally, based on 6D information, we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpc, with a broad dispersion of metallicity. Even stars with a high probability of belonging to the bar show chemical bimodality in the [α/Fe] versus [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant, distinct chemical abundance ratio signature

    Abundance analysis of APOGEE spectra for 58 metal-poor stars from the bulge spheroid

    Get PDF
    The central part of the Galaxy hosts a multitude of stellar populations, including the spheroidal bulge stars, stars moved to the bulge through secular evolution of the bar, inner halo, inner thick disc, inner thin disc, as well as debris from past accretion events. We identified a sample of 58 candidate stars belonging to the stellar population of the spheroidal bulge, and analyse their abundances. The present calculations of Mg, Ca, and Si lines are in agreement with the ASPCAP abundances, whereas abundances of C, N, O, and Ce are re-examined. We find normal α-element enhancements in oxygen, similar to magnesium, Si, and Ca abundances, which are typical of other bulge stars surveyed in the optical in Baade’s Window. The enhancement of [O/Fe] in these stars suggests that they do not belong to accreted debris. No spread in N abundances is found, and none of the sample stars is N-rich, indicating that these stars are not second generation stars originated in globular clusters. Ce instead is enhanced in the sample stars, which points to an s-process origin such as due to enrichment from early generations of massive fast rotating stars, the so-called spinstars.RR acknowledges a CNPq master fellowship. TM acknowledges FAPESP postdoctoral fellowship no. 2018/03480-7. HE acknowledges a CAPES PhD fellowship. A.P.-V. and S.O.S. acknowledge the DGAPA-PAPIIT grant IA103122. SOS acknowledges a FAPESP PhD fellowship no. 2018/22044-3. SOS and MV acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG, project number: 428473034). BB acknowledges grants from FAPESP, CNPq, and CAPES – Financial code 001. J.G.F-T gratefully acknowledges the grant support provided by Proyecto Fondecyt Iniciación No. 11220340, and also from ANID Concurso de Fomento a la Vinculación Internacional para Instituciones de Investigación Regionales (Modalidad corta duración) Proyecto No. FOVI210020, and from the ESO – Government of Chile Joint Committee 2021 (ORP 023/2021). D.G. gratefully acknowledges support from the ANID BASAL project ACE210002. D.G. also acknowledges financial support from the Dirección de Investigación y Desarrollo de la Universidad de La Serena through the Programa de Incentivo a la Investigación de Académicos (PIA-DIDULS). The work of V.M.P. is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. MZ was funded by ANID FONDECYT Regular 1191505, ANID Millennium Institute of Astrophysics (MAS) under grant ICN12_009, the ANID BASAL Center for Astrophysics and Associated Technologies (CATA) through grants AFB170002, ACE210002 and FB210003. DM gratefully acknowledges support by the ANID BASAL projects ACE210002 and FB210003 and by Fondecyt Project No. 1220724. RR, BB, TM, HE, SOS, are part of the Brazilian Participation Group (BPG) in the Sloan Digital Sky Survey (SDSS), from the Laboratório Interinstitucional de e-Astronomia – LIneA, Brazil. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics | Harvard & Smithsonian (CfA), the Chilean Participation Group, the French Participation Group, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. This work makes use of data from the European Space Agency (ESA) space mission Gaia. The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia archive website is https://archives.esac.esa.int/gaia.Peer reviewe
    corecore