4,518 research outputs found

    A Uniform Approximation for the Coherent State Propagator using a Conjugate Application of the Bargmann Representation

    Full text link
    We propose a conjugate application of the Bargmann representation of quantum mechanics. Applying the Maslov method to the semiclassical connection formula between the two representations, we derive a uniform semiclassical approximation for the coherent state propagator which is finite at phase space caustics.Comment: 4 pages, 1 figur

    A New Form of Path Integral for the Coherent States Representation and its Semiclassical Limit

    Full text link
    The overcompleteness of the coherent states basis leads to a multiplicity of representations of Feynman's path integral. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. Two such semiclassical formulas were derived in \cite{Bar01} for the two corresponding path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}. Each of these formulas involve trajectories governed by a different classical representation of the Hamiltonian operator: the P representation in one case and the Q representation in other. In this paper we construct a third representation of the path integral whose semiclassical limit involves directly the Weyl representation of the Hamiltonian operator, i.e., the classical Hamiltonian itself.Comment: 16 pages, no figure

    Semiclassical Tunneling of Wavepackets with Real Trajectories

    Get PDF
    Semiclassical approximations for tunneling processes usually involve complex trajectories or complex times. In this paper we use a previously derived approximation involving only real trajectories propagating in real time to describe the scattering of a Gaussian wavepacket by a finite square potential barrier. We show that the approximation describes both tunneling and interferences very accurately in the limit of small Plank's constant. We use these results to estimate the tunneling time of the wavepacket and find that, for high energies, the barrier slows down the wavepacket but that it speeds it up at energies comparable to the barrier height.Comment: 23 pages, 7 figures Revised text and figure

    An analytically solvable model of probabilistic network dynamics

    Get PDF
    We present a simple model of network dynamics that can be solved analytically for uniform networks. We obtain the dynamics of response of the system to perturbations. The analytical solution is an excellent approximation for random networks. A comparison with the scale-free network, though qualitatively similar, shows the effect of distinct topology.Comment: 4 pages, 1 figur

    Energy Dissipation Via Coupling With A Finite Chaotic Environment.

    Get PDF
    We study the flow of energy between a harmonic oscillator (HO) and an external environment consisting of N two-degrees-of-freedom nonlinear oscillators, ranging from integrable to chaotic according to a control parameter. The coupling between the HO and the environment is bilinear in the coordinates and scales with system size as 1/√N. We study the conditions for energy dissipation and thermalization as a function of N and of the dynamical regime of the nonlinear oscillators. The study is classical and based on a single realization of the dynamics, as opposed to ensemble averages over many realizations. We find that dissipation occurs in the chaotic regime for fairly small values of N, leading to the thermalization of the HO and the environment in a Boltzmann distribution of energies for a well-defined temperature. We develop a simple analytical treatment, based on the linear response theory, that justifies the coupling scaling and reproduces the numerical simulations when the environment is in the chaotic regime.8306111

    Energy transfer dynamics and thermalization of two oscillators interacting via chaos

    Full text link
    We consider the classical dynamics of two particles moving in harmonic potential wells and interacting with the same external environment (HE), consisting of N non-interacting chaotic systems. The parameters are set so that when either particle is separately placed in contact with the environment, a dissipative behavior is observed. When both particles are simultaneously in contact with HE an indirect coupling between them is observed only if the particles are in near resonance. We study the equilibrium properties of the system considering ensemble averages for the case N=1 and single trajectory dynamics for N large. In both cases, the particles and the environment reach an equilibrium configuration at long times, but only for large N a temperature can be assigned to the system.Comment: 8 pages, 6 figure
    • 

    corecore